enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Formulas for generating Pythagorean triples - Wikipedia

    en.wikipedia.org/wiki/Formulas_for_generating...

    from the formula for the tangent of the difference of angles. Using s instead of r in the above formulas will give the same primitive Pythagorean triple but with a and b swapped. Note that r and s can be reconstructed from a, b, and c using r = a / (b + c) and s = b / (a + c).

  3. Incircle and excircles - Wikipedia

    en.wikipedia.org/wiki/Incircle_and_excircles

    The center of the incircle, called the incenter, can be found as the intersection of the three internal angle bisectors. [3] [4] The center of an excircle is the intersection of the internal bisector of one angle (at vertex A, for example) and the external bisectors of the other two.

  4. Mixtilinear incircles of a triangle - Wikipedia

    en.wikipedia.org/wiki/Mixtilinear_incircles_of_a...

    In plane geometry, a mixtilinear incircle of a triangle is a circle which is tangent to two of its sides and internally tangent to its circumcircle. The mixtilinear incircle of a triangle tangent to the two sides containing vertex A {\displaystyle A} is called the A {\displaystyle A} -mixtilinear incircle.

  5. Incenter - Wikipedia

    en.wikipedia.org/wiki/Incenter

    The point of intersection of angle bisectors of the 3 angles of triangle ABC is the incenter (denoted by I). The incircle (whose center is I) touches each side of the triangle. In geometry, the incenter of a triangle is a triangle center, a point defined for any triangle in a way that is independent of the triangle's placement or scale.

  6. Tangential quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Tangential_quadrilateral

    All triangles can have an incircle, but not all quadrilaterals do. An example of a quadrilateral that cannot be tangential is a non-square rectangle. The section characterizations below states what necessary and sufficient conditions a quadrilateral must satisfy to be able to have an incircle.

  7. Soddy circles of a triangle - Wikipedia

    en.wikipedia.org/wiki/Soddy_circles_of_a_triangle

    Each of the three circles centered at the vertices crosses two sides of the triangle at right angles, at one of the three intouch points of the triangle, where its incircle is tangent to the side. The two circles tangent to these three circles are separated by the incircle, one interior to it and one exterior.

  8. Conway circle theorem - Wikipedia

    en.wikipedia.org/wiki/Conway_circle_theorem

    Let I be the center of the incircle of triangle ABC, r its radius and F a, F b and F c the three points where the incircle touches the triangle sides a, b and c. Since the (extended) triangle sides are tangents of the incircle it follows that IF a, IF b and IF c are perpendicular to a, b and c.

  9. Equal incircles theorem - Wikipedia

    en.wikipedia.org/wiki/Equal_incircles_theorem

    If the blue circles are equal, the green circles are also equal. In geometry, the equal incircles theorem derives from a Japanese Sangaku, and pertains to the following construction: a series of rays are drawn from a given point to a given line such that the inscribed circles of the triangles formed by adjacent rays and the base line are equal.