Search results
Results from the WOW.Com Content Network
In probability theory and statistics, the Poisson distribution (/ ˈ p w ɑː s ɒ n /) is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time if these events occur with a known constant mean rate and independently of the time since the last event. [1]
Related to this distribution are a number of other distributions: the displaced Poisson, the hyper-Poisson, the general Poisson binomial and the Poisson type distributions. The Conway–Maxwell–Poisson distribution, a two-parameter extension of the Poisson distribution with an adjustable rate of decay.
Student's T Distribution; Earliest known uses of some of the words of mathematics: S under the heading of "Student's t-distribution", describes briefly how Student's z became t. O'Connor, John J.; Robertson, Edmund F., "William Sealy Gosset", MacTutor History of Mathematics Archive, University of St Andrews
Frequency distribution: a table that displays the frequency of various outcomes in a sample. Relative frequency distribution: a frequency distribution where each value has been divided (normalized) by a number of outcomes in a sample (i.e. sample size). Categorical distribution: for discrete random variables with a finite set of values.
The usefulness and interpretation of Graunt's tables were discussed in a series of correspondences by brothers Ludwig and Christiaan Huygens in 1667, where they realized the difference between mean and median estimates and Christian even interpolated Graunt's life table by a smooth curve, creating the first continuous probability distribution ...
Baron Siméon Denis Poisson (/ p w ɑː ˈ s ɒ̃ /, [1] US also / ˈ p w ɑː s ɒ n /; French: [si.me.ɔ̃ də.ni pwa.sɔ̃]; 21 June 1781 – 25 April 1840) was a French mathematician and physicist who worked on statistics, complex analysis, partial differential equations, the calculus of variations, analytical mechanics, electricity and magnetism, thermodynamics, elasticity, and fluid ...
In statistics, Poisson regression is a generalized linear model form of regression analysis used to model count data and contingency tables. [1] Poisson regression assumes the response variable Y has a Poisson distribution, and assumes the logarithm of its expected value can be modeled by a linear combination of unknown parameters.
In probability theory and statistics, the Conway–Maxwell–Poisson (CMP or COM–Poisson) distribution is a discrete probability distribution named after Richard W. Conway, William L. Maxwell, and Siméon Denis Poisson that generalizes the Poisson distribution by adding a parameter to model overdispersion and underdispersion.