Search results
Results from the WOW.Com Content Network
The double-helix model of DNA structure was first published in the journal Nature by James Watson and Francis Crick in 1953, [6] (X,Y,Z coordinates in 1954 [7]) based on the work of Rosalind Franklin and her student Raymond Gosling, who took the crucial X-ray diffraction image of DNA labeled as "Photo 51", [8] [9] and Maurice Wilkins, Alexander Stokes, and Herbert Wilson, [10] and base-pairing ...
The DNA model shown (far right) is a space-filling, or CPK, model of the DNA double helix. Animated molecular models, such as the wire, or skeletal, type shown at the top of this article, allow one to visually explore the three-dimensional (3D) structure of DNA. Another type of DNA model is the space-filling, or CPK, model.
DNA structure and bases A-B-Z-DNA Side View. Tertiary structure refers to the locations of the atoms in three-dimensional space, taking into consideration geometrical and steric constraints. It is a higher order than the secondary structure, in which large-scale folding in a linear polymer occurs and the entire chain is folded into a specific 3 ...
The two strands of DNA in a double helix can thus be pulled apart like a zipper, either by a mechanical force or high temperature. [27] As a result of this base pair complementarity, all the information in the double-stranded sequence of a DNA helix is duplicated on each strand, which is vital in DNA replication.
Photo 51 is an X-ray based fiber diffraction image of a paracrystalline gel composed of DNA fiber [1] taken by Raymond Gosling, [2] [3] a postgraduate student working under the supervision of Maurice Wilkins and Rosalind Franklin at King's College London, while working in Sir John Randall's group.
The replication fork is a structure that forms within the long helical DNA during DNA replication. It is produced by enzymes called helicases that break the hydrogen bonds that hold the DNA strands together in a helix. The resulting structure has two branching "prongs", each one made up of a single strand of DNA.
The double helix is the dominant tertiary structure for biological DNA, and is also a possible structure for RNA. Three DNA conformations are believed to be found in nature, A-DNA, B-DNA, and Z-DNA. The "B" form described by James D. Watson and Francis Crick is believed to predominate in cells. [2]
The nucleosome is the basic unit of DNA condensation and consists of a DNA double helix bound to an octamer of core histones (2 dimers of H2A and H2B, and an H3/H4 tetramer). About 147 base pairs of DNA coil around 1 octamer, and ~20 base pairs are sequestered by the addition of the linker histone (H1), and various length of "linker" DNA (~0 ...