Search results
Results from the WOW.Com Content Network
Boxplot (with an interquartile range) and a probability density function (pdf) of a Normal N(0,σ 2) Population. In descriptive statistics, the interquartile range (IQR) is a measure of statistical dispersion, which is the spread of the data. [1] The IQR may also be called the midspread, middle 50%, fourth spread, or H‑spread.
The interquartile mean (IQM) (or midmean) is a statistical measure of central tendency based on the truncated mean of the interquartile range.The IQM is very similar to the scoring method used in sports that are evaluated by a panel of judges: discard the lowest and the highest scores; calculate the mean value of the remaining scores.
The third quartile value for the original example above is determined by 11×(3/4) = 8.25, which rounds up to 9. The ninth value in the population is 15. 15 Fourth quartile Although not universally accepted, one can also speak of the fourth quartile. This is the maximum value of the set, so the fourth quartile in this example would be 20.
One of the most common robust measures of scale is the interquartile range (IQR), the difference between the 75th percentile and the 25th percentile of a sample; this is the 25% trimmed range, an example of an L-estimator. Other trimmed ranges, such as the interdecile range (10% trimmed range) can also be used.
The QUARTILE function is a legacy function from Excel 2007 or earlier, giving the same output of the function QUARTILE.INC. In the function, array is the dataset of numbers that is being analyzed and quart is any of the following 5 values depending on which quartile is being calculated. [8]
The midhinge is related to the interquartile range (IQR), the difference of the third and first quartiles (i.e. IQR = Q 3 − Q 1), which is a measure of statistical dispersion. The two are complementary in sense that if one knows the midhinge and the IQR , one can find the first and third quartiles.
In this example, only the first and the last number are changed. The median, third quartile, and first quartile remain the same. In this case, the maximum value in this data set is 89°F, and 1.5 IQR above the third quartile is 88.5°F. The maximum is greater than 1.5 IQR plus the third quartile, so the maximum is an outlier.
A formula which was derived earlier by Scott. [2] Swapping the order of the integration and expectation is justified by Fubini's Theorem . The Freedman–Diaconis rule is derived by assuming that f {\displaystyle f} is a Normal distribution , making it an example of a normal reference rule .