Search results
Results from the WOW.Com Content Network
In applied mathematics, discretization is the process of transferring continuous functions, models, variables, and equations into discrete counterparts. This process is usually carried out as a first step toward making them suitable for numerical evaluation and implementation on digital computers.
Discretization of continuous features. 5 languages. ... discretization refers to the process of converting or partitioning continuous attributes, ...
For example, consider the ordinary differential equation ′ = + The Euler method for solving this equation uses the finite difference quotient (+) ′ to approximate the differential equation by first substituting it for u'(x) then applying a little algebra (multiplying both sides by h, and then adding u(x) to both sides) to get (+) + (() +).
Examples of the variational formulation are the Galerkin method, the discontinuous Galerkin method, mixed methods, etc. A discretization strategy is understood to mean a clearly defined set of procedures that cover (a) the creation of finite element meshes, (b) the definition of basis function on reference elements (also called shape functions ...
Feature models are visually represented by means of feature diagrams. Feature models are widely used during the whole product line development process and are commonly used as input to produce other assets such as documents, architecture definition, or pieces of code. [citation needed] A SPL is a family of related programs.
More precisely, the GDM starts by defining a Gradient Discretization (GD), which is a triplet = (,,,), where: the set of discrete unknowns X D , 0 {\displaystyle X_{D,0}} is a finite dimensional real vector space,
Object process methodology (OPM) is a conceptual modeling language and methodology for capturing knowledge and designing systems, specified as ISO/PAS 19450. [1] Based on a minimal universal ontology of stateful objects and processes that transform them, OPM can be used to formally specify the function, structure, and behavior of artificial and natural systems in a large variety of domains.
Especially, it is a robust spatial discretization method for simulating multi-phase (solid-fluid-gas) interactions. In the MPM, a continuum body is described by a number of small Lagrangian elements referred to as 'material points'. These material points are surrounded by a background mesh/grid that is used to calculate terms such as the ...