Search results
Results from the WOW.Com Content Network
For cancer to develop, genes regulating cell growth and differentiation must be altered; these mutations are then maintained through subsequent cell divisions and are thus present in all cancerous cells. Gene expression profiling is a technique used in molecular biology to query the expression of thousands of genes simultaneously. In the ...
Genetic testing, also known as DNA testing, is used to identify changes in DNA sequence or chromosome structure. Genetic testing can also include measuring the results of genetic changes, such as RNA analysis as an output of gene expression , or through biochemical analysis to measure specific protein output. [ 1 ]
Cancer genome sequencing is the whole genome sequencing of a single, homogeneous or heterogeneous group of cancer cells. It is a biochemical laboratory method for the characterization and identification of the DNA or RNA sequences of cancer cell(s).
Chk1 has a central role in coordinating the DNA damage response and therefore is an area of great interest in oncology and the development of cancer therapeutics. [15] Initially Chk1 was thought to function as a tumor suppressor due to the regulatory role it serves amongst cells with DNA damage.
A DNA microarray is a collection of microscopic DNA spots attached to a solid surface. Scientists use DNA microarrays to measure the expression levels of large numbers of genes simultaneously or to genotype multiple regions of a genome. When a gene is expressed in a cell, it generates messenger RNA (mRNA). Overexpressed genes generate more mRNA ...
HeLa cells are rapidly dividing cancer cells, and the number of chromosomes varies during cancer formation and cell culture. The current estimate (excluding very tiny fragments) is a "hypertriploid chromosome number (3n+)", which means 76 to 80 total chromosomes (rather than the normal diploid number of 46) with 22–25 clonally abnormal ...
The human genome contains on the order of 20,000 genes which work in concert to produce roughly 1,000,000 distinct proteins. This is due to alternative splicing, and also because cells make important changes to proteins through posttranslational modification after they first construct them, so a given gene serves as the basis for many possible versions of a particular protein.
It then copies the gene sequence into a messenger RNA transcript until it reaches a region of DNA called the terminator, where it halts and detaches from the DNA. As with human DNA-dependent DNA polymerases, RNA polymerase II , the enzyme that transcribes most of the genes in the human genome, operates as part of a large protein complex with ...