enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Random forest - Wikipedia

    en.wikipedia.org/wiki/Random_forest

    Random forests or random decision forests is an ensemble learning method for classification, regression and other tasks that works by creating a multitude of decision trees during training. For classification tasks, the output of the random forest is the class selected by most trees.

  3. scikit-learn - Wikipedia

    en.wikipedia.org/wiki/Scikit-learn

    scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...

  4. Decision tree learning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_learning

    Rotation forest – in which every decision tree is trained by first applying principal component analysis (PCA) on a random subset of the input features. [ 13 ] A special case of a decision tree is a decision list , [ 14 ] which is a one-sided decision tree, so that every internal node has exactly 1 leaf node and exactly 1 internal node as a ...

  5. Jackknife variance estimates for random forest - Wikipedia

    en.wikipedia.org/wiki/Jackknife_Variance...

    (December 2015) (Learn how and when to remove this message) In statistics, jackknife variance estimates for random forest are a way to estimate the variance in random forest models, in order to eliminate the bootstrap effects.

  6. Ensemble learning - Wikipedia

    en.wikipedia.org/wiki/Ensemble_learning

    Fast algorithms such as decision trees are commonly used in ensemble methods (e.g., random forests), although slower algorithms can benefit from ensemble techniques as well. By analogy, ensemble techniques have been used also in unsupervised learning scenarios, for example in consensus clustering or in anomaly detection.

  7. Random subspace method - Wikipedia

    en.wikipedia.org/wiki/Random_subspace_method

    The random subspace method has been used for decision trees; when combined with "ordinary" bagging of decision trees, the resulting models are called random forests. [5] It has also been applied to linear classifiers , [ 6 ] support vector machines , [ 7 ] nearest neighbours [ 8 ] [ 9 ] and other types of classifiers.

  8. Logistic regression - Wikipedia

    en.wikipedia.org/wiki/Logistic_regression

    Logistic regression is used in various fields, including machine learning, most medical fields, and social sciences. For example, the Trauma and Injury Severity Score (), which is widely used to predict mortality in injured patients, was originally developed by Boyd et al. using logistic regression. [6]

  9. Support vector machine - Wikipedia

    en.wikipedia.org/wiki/Support_vector_machine

    The difference between the hinge loss and these other loss functions is best stated in terms of target functions - the function that minimizes expected risk for a given pair of random variables ,. In particular, let y x {\displaystyle y_{x}} denote y {\displaystyle y} conditional on the event that X = x {\displaystyle X=x} .