enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stable Diffusion - Wikipedia

    en.wikipedia.org/wiki/Stable_Diffusion

    Diagram of the latent diffusion architecture used by Stable Diffusion The denoising process used by Stable Diffusion. The model generates images by iteratively denoising random noise until a configured number of steps have been reached, guided by the CLIP text encoder pretrained on concepts along with the attention mechanism, resulting in the ...

  3. Latent diffusion model - Wikipedia

    en.wikipedia.org/wiki/Latent_Diffusion_Model

    The Latent Diffusion Model (LDM) [1] is a diffusion model architecture developed by the CompVis (Computer Vision & Learning) [2] group at LMU Munich. [ 3 ] Introduced in 2015, diffusion models (DMs) are trained with the objective of removing successive applications of noise (commonly Gaussian ) on training images.

  4. Diffusion model - Wikipedia

    en.wikipedia.org/wiki/Diffusion_model

    The base diffusion model can only generate unconditionally from the whole distribution. For example, a diffusion model learned on ImageNet would generate images that look like a random image from ImageNet. To generate images from just one category, one would need to impose the condition, and then sample from the conditional distribution.

  5. Fréchet inception distance - Wikipedia

    en.wikipedia.org/wiki/Fréchet_inception_distance

    The Fréchet inception distance (FID) is a metric used to assess the quality of images created by a generative model, like a generative adversarial network (GAN) [1] or a diffusion model. [ 2 ] [ 3 ] The FID compares the distribution of generated images with the distribution of a set of real images (a "ground truth" set).

  6. Generative model - Wikipedia

    en.wikipedia.org/wiki/Generative_model

    a generative model is a model of the conditional probability of the observable X, given a target y, symbolically, (=) [2] a discriminative model is a model of the conditional probability of the target Y , given an observation x , symbolically, P ( Y ∣ X = x ) {\displaystyle P(Y\mid X=x)} [ 3 ]

  7. Diffusion process - Wikipedia

    en.wikipedia.org/wiki/Diffusion_process

    In probability theory and statistics, diffusion processes are a class of continuous-time Markov process with almost surely continuous sample paths. Diffusion process is stochastic in nature and hence is used to model many real-life stochastic systems.

  8. Comparison diagram - Wikipedia

    en.wikipedia.org/wiki/Comparison_diagram

    Comparison of skyscrapers. Comparison diagram or comparative diagram is a general type of diagram, in which a comparison is made between two or more objects, phenomena or groups of data. [1] A comparison diagram or can offer qualitative and/or quantitative information. This type of diagram can also be called comparison chart or comparison chart.

  9. Maxwell–Stefan diffusion - Wikipedia

    en.wikipedia.org/wiki/Maxwell–Stefan_diffusion

    The Maxwell–Stefan diffusion (or Stefan–Maxwell diffusion) is a model for describing diffusion in multicomponent systems. The equations that describe these transport processes have been developed independently and in parallel by James Clerk Maxwell [ 1 ] for dilute gases and Josef Stefan [ 2 ] for liquids.