Search results
Results from the WOW.Com Content Network
As an example: the partition function for the isothermal-isobaric ensemble, the generalized Boltzmann distribution, divides up probabilities based on particle number, pressure, and temperature. The energy is replaced by the characteristic potential of that ensemble, the Gibbs Free Energy .
The partition function or configuration integral, as used in probability theory, information theory and dynamical systems, is a generalization of the definition of a partition function in statistical mechanics. It is a special case of a normalizing constant in probability theory, for the Boltzmann distribution.
The normalization condition that the trace of be equal to 1 defines the partition function to be () = (). If the number of particles involved in the system is itself not certain, then a grand canonical ensemble can be applied, where the states summed over to make the density matrix are drawn from a Fock space .
In other words, each single-particle level is a separate, tiny grand canonical ensemble. By the Pauli exclusion principle, there are only two possible microstates for the single-particle level: no particle (energy E = 0), or one particle (energy E = ε). The resulting partition function for that single-particle level therefore has just two terms:
For now let us refer to these single-particle stationary states as orbitals (to avoid confusing these "states" with the total many-body state), with the provision that each possible internal particle property (spin or polarization) counts as a separate orbital. Each orbital may be occupied by a particle (or particles), or may be empty.
For partition functions with Grassmann valued fermion fields, the sources are also Grassmann valued. [7] For example, a theory with a single Dirac fermion requires the introduction of two Grassmann currents and ¯ so that the partition function is
That is, the number of particles within the overall system that occupy a given single particle state form a sub-ensemble that is also grand canonical ensemble; hence, it may be analysed through the construction of a grand partition function. Every single-particle state is of a fixed energy, .
What has been presented above is essentially a derivation of the canonical partition function. As one can see by comparing the definitions, the Boltzmann sum over states is equal to the canonical partition function. Exactly the same approach can be used to derive Fermi–Dirac and Bose–Einstein statistics.