enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Partition function (statistical mechanics) - Wikipedia

    en.wikipedia.org/wiki/Partition_function...

    As an example: the partition function for the isothermal-isobaric ensemble, the generalized Boltzmann distribution, divides up probabilities based on particle number, pressure, and temperature. The energy is replaced by the characteristic potential of that ensemble, the Gibbs Free Energy .

  3. Partition function (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Partition_function...

    The partition function or configuration integral, as used in probability theory, information theory and dynamical systems, is a generalization of the definition of a partition function in statistical mechanics. It is a special case of a normalizing constant in probability theory, for the Boltzmann distribution.

  4. Density matrix - Wikipedia

    en.wikipedia.org/wiki/Density_matrix

    The normalization condition that the trace of be equal to 1 defines the partition function to be () = ⁡ (). If the number of particles involved in the system is itself not certain, then a grand canonical ensemble can be applied, where the states summed over to make the density matrix are drawn from a Fock space .

  5. Fermi–Dirac statistics - Wikipedia

    en.wikipedia.org/wiki/Fermi–Dirac_statistics

    In other words, each single-particle level is a separate, tiny grand canonical ensemble. By the Pauli exclusion principle, there are only two possible microstates for the single-particle level: no particle (energy E = 0), or one particle (energy E = ε). The resulting partition function for that single-particle level therefore has just two terms:

  6. Grand canonical ensemble - Wikipedia

    en.wikipedia.org/wiki/Grand_canonical_ensemble

    For now let us refer to these single-particle stationary states as orbitals (to avoid confusing these "states" with the total many-body state), with the provision that each possible internal particle property (spin or polarization) counts as a separate orbital. Each orbital may be occupied by a particle (or particles), or may be empty.

  7. Partition function (quantum field theory) - Wikipedia

    en.wikipedia.org/wiki/Partition_function...

    For partition functions with Grassmann valued fermion fields, the sources are also Grassmann valued. [7] For example, a theory with a single Dirac fermion requires the introduction of two Grassmann currents and ¯ so that the partition function is

  8. Bose–Einstein statistics - Wikipedia

    en.wikipedia.org/wiki/Bose–Einstein_statistics

    That is, the number of particles within the overall system that occupy a given single particle state form a sub-ensemble that is also grand canonical ensemble; hence, it may be analysed through the construction of a grand partition function. Every single-particle state is of a fixed energy, .

  9. Maxwell–Boltzmann statistics - Wikipedia

    en.wikipedia.org/wiki/Maxwell–Boltzmann_statistics

    What has been presented above is essentially a derivation of the canonical partition function. As one can see by comparing the definitions, the Boltzmann sum over states is equal to the canonical partition function. Exactly the same approach can be used to derive Fermi–Dirac and Bose–Einstein statistics.