enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Helium-4 - Wikipedia

    en.wikipedia.org/wiki/Helium-4

    The stability of helium-4 is the reason that hydrogen is converted to helium-4, and not deuterium (hydrogen-2) or helium-3 or other heavier elements during fusion reactions in the Sun. It is also partly responsible for the alpha particle being by far the most common type of baryonic particle to be ejected from an atomic nucleus; in other words ...

  3. Superfluidity - Wikipedia

    en.wikipedia.org/wiki/Superfluidity

    In liquid helium-4, the superfluidity occurs at far higher temperatures than it does in helium-3. Each atom of helium-4 is a boson particle, by virtue of its integer spin. A helium-3 atom is a fermion particle; it can form bosons only by pairing with another particle like itself, which occurs at much lower temperatures. The discovery of ...

  4. Superfluid helium-4 - Wikipedia

    en.wikipedia.org/wiki/Superfluid_helium-4

    This condensation occurs in liquid helium-4 at a far higher temperature (2.17 K) than it does in helium-3 (2.5 mK) because each atom of helium-4 is a boson particle, by virtue of its zero spin. Helium-3, however, is a fermion particle, which can form bosons only by pairing with itself at much lower temperatures, in a weaker process that is ...

  5. Helion (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Helion_(chemistry)

    The term helion is a portmanteau of helium and ion, and in practice refers specifically to the nucleus of the helium-3 isotope, consisting of two protons and one neutron. The nucleus of the other (and far more common) stable isotope of helium, helium-4, consisting of two protons and two neutrons, is called an alpha particle or an alpha for short.

  6. Roton - Wikipedia

    en.wikipedia.org/wiki/Roton

    In theoretical physics, a roton is an elementary excitation, or quasiparticle, seen in superfluid helium-4 and Bose–Einstein condensates with long-range dipolar interactions or spin-orbit coupling. The dispersion relation of elementary excitations in this superfluid shows a linear increase from the origin, but exhibits first a maximum and ...

  7. Liquid helium - Wikipedia

    en.wikipedia.org/wiki/Liquid_helium

    Liquid helium is a physical state of helium at very low temperatures at standard atmospheric pressures.Liquid helium may show superfluidity.. At standard pressure, the chemical element helium exists in a liquid form only at the extremely low temperature of −269 °C (−452.20 °F; 4.15 K).

  8. Nuclear reaction - Wikipedia

    en.wikipedia.org/wiki/Nuclear_reaction

    This can be calculated by reference to a table of very accurate particle rest masses, [4] as follows: according to the reference tables, the 6 3 Li nucleus has a standard atomic weight of 6.015 atomic mass units (abbreviated u), the deuterium has 2.014 u, and the helium-4 nucleus has 4.0026 u. Thus:

  9. Alpha decay - Wikipedia

    en.wikipedia.org/wiki/Alpha_decay

    One curiosity is why alpha particles, helium nuclei, should be preferentially emitted as opposed to other particles like a single proton or neutron or other atomic nuclei. [note 1] Part of the reason is the high binding energy of the alpha particle, which means that its mass is less than the sum of the masses of two free protons and two free ...