Search results
Results from the WOW.Com Content Network
Generative artificial intelligence (generative AI, GenAI, [1] or GAI) is a subset of artificial intelligence that uses generative models to produce text, images, videos, or other forms of data. [ 2 ] [ 3 ] [ 4 ] These models learn the underlying patterns and structures of their training data and use them to produce new data [ 5 ] [ 6 ] based on ...
Generative artificial intelligence (generative AI, GenAI, [165] or GAI) is a subset of artificial intelligence that uses generative models to produce text, images, videos, or other forms of data. [ 166 ] [ 167 ] [ 168 ] These models learn the underlying patterns and structures of their training data and use them to produce new data [ 169 ...
One of the earliest agent-based models in concept was Thomas Schelling's segregation model, [6] which was discussed in his paper "Dynamic Models of Segregation" in 1971. . Though Schelling originally used coins and graph paper rather than computers, his models embodied the basic concept of agent-based models as autonomous agents interacting in a shared environment with an observed aggregate ...
Generative science is an area of research that explores the natural world and its complex behaviours. It explores ways "to generate apparently unanticipated and infinite behaviour based on deterministic and finite rules and parameters reproducing or resembling the behavior of natural and social phenomena". [ 1 ]
For many years, sequence modelling and generation was done by using plain recurrent neural networks (RNNs). A well-cited early example was the Elman network (1990). In theory, the information from one token can propagate arbitrarily far down the sequence, but in practice the vanishing-gradient problem leaves the model's state at the end of a long sentence without precise, extractable ...
Retrieval-augmented generation (RAG) is a technique that grants generative artificial intelligence models information retrieval capabilities. It modifies interactions with a large language model (LLM) so that the model responds to user queries with reference to a specified set of documents, using this information to augment information drawn from its own vast, static training data.
A generative adversarial network (GAN) is a class of machine learning frameworks and a prominent framework for approaching generative artificial intelligence. The concept was initially developed by Ian Goodfellow and his colleagues in June 2014. [ 1 ]
Analogously, a classifier based on a generative model is a generative classifier, while a classifier based on a discriminative model is a discriminative classifier, though this term also refers to classifiers that are not based on a model. Standard examples of each, all of which are linear classifiers, are: generative classifiers: