Search results
Results from the WOW.Com Content Network
H s is the design significant wave height at the toe of the structure (m) Δ is the dimensionless relative buoyant density of rock, i.e. (ρ r / ρ w - 1) = around 1.58 for granite in sea water; ρ r and ρ w are the densities of rock and (sea)water (kg/m 3) D n50 is the nominal median diameter of armor blocks = (W 50 /ρ r) 1/3 (m)
To find the length of the gradually varied flow transitions, iterate the “step length”, instead of height, at the boundary condition height until equations 4 and 5 agree. (e.g. For an M1 Profile, position 1 would be the downstream condition and you would solve for position two where the height is equal to normal depth.)
[1] [2] [3] It is the sum of the weights of cargo, fuel, fresh water, ballast water, provisions, passengers, and crew. [1] Draft or draught (d) or (T) – The vertical distance from the bottom of the keel to the waterline. Used mainly to determine the minimum water depth for safe passage of a vessel and to calculate the vessel's displacement ...
Depth is the depth of the hold, in feet below the main deck. The numerator yields the ship's volume expressed in cubic feet. If a "tun" is deemed to be equivalent to 100 cubic feet, then the tonnage is simply the number of such 100 cubic feet 'tun' units of volume. 100 the divisor is unitless, so tonnage would be expressed in 'ft 3 of tun'. [1]
This can be seen in Figure 6 by the decrease in depth from y 1,q=30 to y 1,q=10 and the increase in depth between y 2,q=30 and y 2,q=10. From this analysis of the change in depth due to a change in flow rate, we can also imagine that the energy lost in a jump with a value of q = 10 ft 2 /s would be different from that of a jump with q = 30 ft 2 /s.
At a basic level, it is typically calculated in metres using the formula: [1] UKC = Charted Depth − Draft-/+ Height of Tide. Ship masters and deck officers can obtain the depth of water from Electronic navigational charts. [5] More dynamic or advanced calculations include safety margins for manoeuvring effects and squat. [7]
Stream power, originally derived by R. A. Bagnold in the 1960s, is the amount of energy the water in a river or stream is exerting on the sides and bottom of the river. [1] Stream power is the result of multiplying the density of the water, the acceleration of the water due to gravity, the volume of water flowing through the river, and the ...
Hull speed can be calculated by the following formula: where is the length of the waterline in feet, and is the hull speed of the vessel in knots. If the length of waterline is given in metres and desired hull speed in knots, the coefficient is 2.43 kn·m −½.