Search results
Results from the WOW.Com Content Network
Whether a particular function or value is undefined, depends on the rules of the formal system in which it is used. For example, the imaginary number is undefined within the set of real numbers. So it is meaningless to reason about the value, solely within the discourse of real numbers.
The following table lists many common symbols, together with their name, how they should be read out loud, and the related field of mathematics. Additionally, the subsequent columns contains an informal explanation, a short example, the Unicode location, the name for use in HTML documents, [1] and the LaTeX symbol.
A mathematical symbol is a figure or a combination of figures that is used to represent a mathematical object, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a formula. As formulas are entirely constituted with symbols of various types, many symbols are needed for ...
arcexs – inverse exsecant function. (Also written as arcexsec.) arcexsec – inverse exsecant function. (Also written as arcexs.) arcosech – inverse hyperbolic cosecant function. (Also written as arcsch.) arcosh – inverse hyperbolic cosine function. arcoth – inverse hyperbolic cotangent function. arcsch – inverse hyperbolic cosecant ...
A function that is not well defined is not the same as a function that is undefined. For example, if f ( x ) = 1 x {\displaystyle f(x)={\frac {1}{x}}} , then even though f ( 0 ) {\displaystyle f(0)} is undefined, this does not mean that the function is not well defined; rather, 0 is not in the domain of f {\displaystyle f} .
This is an accepted version of this page This is the latest accepted revision, reviewed on 9 January 2025. Look up undefined in Wiktionary, the free dictionary. Undefined may refer to: Mathematics Undefined (mathematics), with several related meanings Indeterminate form, in calculus Computing Undefined behavior, computer code whose behavior is not specified under certain conditions Undefined ...
The value of the function at a critical point is a critical value. [1] More specifically, when dealing with functions of a real variable, a critical point, also known as a stationary point, is a point in the domain of the function where the function derivative is equal to zero (or where the function is not differentiable). [2]
For example, given a field, the set of polynomials with coefficients in is the polynomial ring with polynomial addition and multiplication as operations. In particular, if two indeterminates X {\displaystyle X} and Y {\displaystyle Y} are used, then the polynomial ring K [ X , Y ] {\displaystyle K[X,Y]} also uses these operations, and ...