enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Potential flow - Wikipedia

    en.wikipedia.org/wiki/Potential_flow

    In flow regions where vorticity is known to be important, such as wakes and boundary layers, potential flow theory is not able to provide reasonable predictions of the flow. [1] Fortunately, there are often large regions of a flow where the assumption of irrotationality is valid which is why potential flow is used for various applications.

  3. Potential flow around a circular cylinder - Wikipedia

    en.wikipedia.org/wiki/Potential_flow_around_a...

    Potential flow with zero circulation. In mathematics, potential flow around a circular cylinder is a classical solution for the flow of an inviscid, incompressible fluid around a cylinder that is transverse to the flow. Far from the cylinder, the flow is unidirectional and uniform.

  4. Stream function - Wikipedia

    en.wikipedia.org/wiki/Stream_function

    For two-dimensional potential flow, streamlines are perpendicular to equipotential lines. Taken together with the velocity potential , the stream function may be used to derive a complex potential. In other words, the stream function accounts for the solenoidal part of a two-dimensional Helmholtz decomposition , while the velocity potential ...

  5. Bernoulli's principle - Wikipedia

    en.wikipedia.org/wiki/Bernoulli's_principle

    Note that the relation of the potential to the flow velocity is unaffected by this transformation: ∇Φ = ∇φ. The Bernoulli equation for unsteady potential flow also appears to play a central role in Luke's variational principle, a variational description of free-surface flows using the Lagrangian mechanics.

  6. Kutta–Joukowski theorem - Wikipedia

    en.wikipedia.org/wiki/Kutta–Joukowski_theorem

    Kutta and Joukowski showed that for computing the pressure and lift of a thin airfoil for flow at large Reynolds number and small angle of attack, the flow can be assumed inviscid in the entire region outside the airfoil provided the Kutta condition is imposed. This is known as the potential flow theory and works remarkably well in practice.

  7. Two-dimensional flow - Wikipedia

    en.wikipedia.org/wiki/Two-dimensional_flow

    As the fluid flows outward, the area of flow increases. As a result, to satisfy continuity equation, the velocity decreases and the streamlines spread out. The velocity at all points at a given distance from the source is the same. Fig 2 - Streamlines and potential lines for source flow. The velocity of fluid flow can be given as -

  8. Flow velocity - Wikipedia

    en.wikipedia.org/wiki/Flow_velocity

    A flow is irrotational if the curl of is zero: = That is, if is an irrotational vector field.. A flow in a simply-connected domain which is irrotational can be described as a potential flow, through the use of a velocity potential, with =.

  9. Velocity potential - Wikipedia

    en.wikipedia.org/wiki/Velocity_potential

    A velocity potential is a scalar potential used in potential flow theory. It was introduced by Joseph-Louis Lagrange in 1788. [1] It is used in continuum mechanics, when a continuum occupies a simply-connected region and is irrotational. In such a case, =, where u denotes the flow velocity.