Search results
Results from the WOW.Com Content Network
ALE uses a conditional feature distribution as an input and generates augmented data, creating more realistic data than a marginal distribution. [2] It ignores far out-of-distribution (outlier) values. [1] Unlike partial dependence plots and marginal plots, ALE is not defeated in the presence of correlated predictors. [3]
In machine learning, feature selection is the process of selecting a subset of relevant features (variables, predictors) for use in model construction. Feature selection techniques are used for several reasons: simplification of models to make them easier to interpret, [1] shorter training times, [2] to avoid the curse of dimensionality, [3]
Matplotlib (portmanteau of MATLAB, plot, and library [3]) is a plotting library for the Python programming language and its numerical mathematics extension NumPy.It provides an object-oriented API for embedding plots into applications using general-purpose GUI toolkits like Tkinter, wxPython, Qt, or GTK.
A funnel plot is a scatterplot of treatment effect against a measure of study size. It is used primarily as a visual aid to detecting bias or systematic heterogeneity. Dot plot (statistics) : A dot chart or dot plot is a statistical chart consisting of group of data points plotted on a
Alternatively, these scores may be applied as feature weights to guide downstream modeling. Relief feature scoring is based on the identification of feature value differences between nearest neighbor instance pairs. If a feature value difference is observed in a neighboring instance pair with the same class (a 'hit'), the feature score decreases.
Gradient boosting can be used for feature importance ranking, which is usually based on aggregating importance function of the base learners. [22] For example, if a gradient boosted trees algorithm is developed using entropy-based decision trees , the ensemble algorithm ranks the importance of features based on entropy as well with the caveat ...
Parallel Coordinates plots are a common method of visualizing high-dimensional datasets to analyze multivariate data having multiple variables, or attributes. To plot, or visualize, a set of points in n-dimensional space, n parallel lines are drawn over the background representing coordinate axes
Q–Q plot for first opening/final closing dates of Washington State Route 20, versus a normal distribution. [5] Outliers are visible in the upper right corner. A Q–Q plot is a plot of the quantiles of two distributions against each other, or a plot based on estimates of the quantiles.