Search results
Results from the WOW.Com Content Network
Parallel task scheduling (also called parallel job scheduling [1] [2] or parallel processing scheduling [3]) is an optimization problem in computer science and operations research. It is a variant of optimal job scheduling .
In computer science, gang scheduling is a scheduling algorithm for parallel systems that schedules related threads or processes to run simultaneously on different processors. Usually these will be threads all belonging to the same process, but they may also be from different processes, where the processes could have a producer-consumer ...
The required output is a schedule – an assignment of jobs to machines. The schedule should optimize a certain objective function. In the literature, problems of optimal job scheduling are often called machine scheduling, processor scheduling, multiprocessor scheduling, or just scheduling.
Schedule each job in this sequence into a machine in which the current load (= total processing-time of scheduled jobs) is smallest. Step 2 of the algorithm is essentially the list-scheduling (LS) algorithm. The difference is that LS loops over the jobs in an arbitrary order, while LPT pre-orders them by descending processing time.
Portable Batch System (or simply PBS) is the name of computer software that performs job scheduling. Its primary task is to allocate computational tasks, i.e., batch jobs, among the available computing resources. It is often used in conjunction with UNIX cluster environments.
The basic form of the problem of scheduling jobs with multiple (M) operations, over M machines, such that all of the first operations must be done on the first machine, all of the second operations on the second, etc., and a single job cannot be performed in parallel, is known as the flow-shop scheduling problem.
Uniform machine scheduling (also called uniformly-related machine scheduling or related machine scheduling) is an optimization problem in computer science and operations research. It is a variant of optimal job scheduling. We are given n jobs J 1, J 2, ..., J n of varying processing times, which need to be scheduled on m different machines.
Researchers have classified three types of coscheduling: explicit coscheduling, local scheduling and implicit or dynamic coscheduling. [1] Explicit coscheduling requires all processing to take place at the same time, and is typically implemented by global scheduling across all processors. A specific algorithm is known as gang scheduling.