Search results
Results from the WOW.Com Content Network
A newton is defined as 1 kg⋅m/s 2 (it is a named derived unit defined in terms of the SI base units). [1]: 137 One newton is, therefore, the force needed to accelerate one kilogram of mass at the rate of one metre per second squared in the direction of the applied force.
The kilogram-force (kgf or kg F), or kilopond (kp, from Latin: pondus, lit. 'weight'), is a non-standard gravitational metric unit of force.It is not accepted for use with the International System of Units (SI) [1] and is deprecated for most uses.
In engineering and physics, g c is a unit conversion factor used to convert mass to force or vice versa. [1] It is defined as = In unit systems where force is a derived unit, like in SI units, g c is equal to 1.
The work done when a force of one newton moves the point of its application a distance of one metre in the direction of the force. [32] = 1 J = 1 m⋅N = 1 kg⋅m 2 /s 2 = 1 C⋅V = 1 W⋅s kilocalorie; large calorie: kcal; Cal ≡ 1000 cal IT = 4.1868 × 10 3 J: kilowatt-hour; Board of Trade Unit: kW⋅h; B.O.T.U. ≡ 1 kW × 1 h = 3.6 × 10 6 J
Mass flow rate is defined by the limit [3] [4] ˙ = =, i.e., the flow of mass through a surface per time .. The overdot on ˙ is Newton's notation for a time derivative.Since mass is a scalar quantity, the mass flow rate (the time derivative of mass) is also a scalar quantity.
Newton's method is one of many known methods of computing square roots. Given a positive number a, the problem of finding a number x such that x 2 = a is equivalent to finding a root of the function f(x) = x 2 − a. The Newton iteration defined by this function is given by
For Newton number, see also Kissing number in the sphere packing problem. For use in arithmetic and algebra, see Exponentiation . The power number N p (also known as Newton number ) is a commonly used dimensionless number relating the resistance force to the inertia force .
A form of Newton's second law, that force is the rate of change of momentum, also holds, as does the conservation of momentum. However, the definition of momentum is modified. Among the consequences of this is the fact that the more quickly a body moves, the harder it is to accelerate, and so, no matter how much force is applied, a body cannot ...