enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tsiolkovsky rocket equation - Wikipedia

    en.wikipedia.org/wiki/Tsiolkovsky_rocket_equation

    A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...

  3. Dunkerley's method - Wikipedia

    en.wikipedia.org/wiki/Dunkerley's_Method

    The whirling frequency of a symmetric cross section of a given length between two points is given by: = where: E = Young's modulus, I = second moment of area, m = mass of the shaft, L = length of the shaft between points.

  4. Two-body problem - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem

    By contrast, subtracting equation (2) from equation (1) results in an equation that describes how the vector r = x 1 − x 2 between the masses changes with time. The solutions of these independent one-body problems can be combined to obtain the solutions for the trajectories x 1 ( t ) and x 2 ( t ) .

  5. Characteristic velocity - Wikipedia

    en.wikipedia.org/wiki/Characteristic_velocity

    Specific impulse and effective exhaust velocity are dependent on the nozzle design unlike the characteristic velocity, explaining why C-star is an important value when comparing different propulsion system efficiencies. c* can be useful when comparing actual combustion performance to theoretical performance in order to determine how completely ...

  6. Gurney equations - Wikipedia

    en.wikipedia.org/wiki/Gurney_equations

    The Gurney equations relate the following quantities: C - The mass of the explosive charge M - The mass of the accelerated shell or sheet of material (usually metal). The shell or sheet is often referred to as the flyer, or flyer plate. V or V m - Velocity of accelerated flyer after explosive detonation

  7. Piston motion equations - Wikipedia

    en.wikipedia.org/wiki/Piston_motion_equations

    From the foregoing, you can see that the time domain equations are simply scaled forms of the angle domain equations: is unscaled, ′ is scaled by ω, and ″ is scaled by ω². To convert the angle domain equations to time domain, first replace A with ωt , and then scale for angular velocity as follows: multiply x ′ {\displaystyle x'} by ...

  8. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    A differential equation of motion, usually identified as some physical law (for example, F = ma), and applying definitions of physical quantities, is used to set up an equation to solve a kinematics problem. Solving the differential equation will lead to a general solution with arbitrary constants, the arbitrariness corresponding to a set of ...

  9. Lambert's problem - Wikipedia

    en.wikipedia.org/wiki/Lambert's_problem

    In celestial mechanics, Lambert's problem is concerned with the determination of an orbit from two position vectors and the time of flight, posed in the 18th century by Johann Heinrich Lambert and formally solved with mathematical proof by Joseph-Louis Lagrange. It has important applications in the areas of rendezvous, targeting, guidance, and ...