Search results
Results from the WOW.Com Content Network
Specific impulse and effective exhaust velocity are dependent on the nozzle design unlike the characteristic velocity, explaining why C-star is an important value when comparing different propulsion system efficiencies. c* can be useful when comparing actual combustion performance to theoretical performance in order to determine how completely ...
A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...
The whirling frequency of a symmetric cross section of a given length between two points is given by: = where: E = Young's modulus, I = second moment of area, m = mass of the shaft, L = length of the shaft between points.
The van Deemter equation is a hyperbolic function that predicts that there is an optimum velocity at which there will be the minimum variance per unit column length and, thence, a maximum efficiency. The van Deemter equation was the result of the first application of rate theory to the chromatography elution process.
In aerodynamics, the normal shock tables are a series of tabulated data listing the various properties before and after the occurrence of a normal shock wave. [1] With a given upstream Mach number, the post-shock Mach number can be calculated along with the pressure, density, temperature, and stagnation pressure ratios.
Orbital position vector, orbital velocity vector, other orbital elements. In astrodynamics and celestial dynamics, the orbital state vectors (sometimes state vectors) of an orbit are Cartesian vectors of position and velocity that together with their time () uniquely determine the trajectory of the orbiting body in space.
The TKE can be defined to be half the sum of the variances σ² (square of standard deviations σ) of the fluctuating velocity components: = (+ +) = ((′) ¯ + (′) ¯ + (′) ¯), where each turbulent velocity component is the difference between the instantaneous and the average velocity: ′ = ¯ (Reynolds decomposition).
The protonation of isobutene in the formation of a carbocation: (CH 3) 2 C=CH 2 + HBF 4 ⇌ (CH 3) 3 C + + BF − 4; The protonation of ammonia in the formation of ammonium chloride from ammonia and hydrogen chloride: NH 3 + HCl → NH 4 Cl; Protonation is a fundamental chemical reaction and is a step in many stoichiometric and catalytic processes.