Search results
Results from the WOW.Com Content Network
The type of carrier proteins used in facilitated diffusion is slightly different from those used in active transport. They are still transmembrane carrier proteins, but these are gated transmembrane channels, meaning they do not internally translocate, nor require ATP to function.
ATP hydrolysis is used to transport hydrogen ions against the electrochemical gradient (from low to high hydrogen ion concentration). Phosphorylation of the carrier protein and the binding of a hydrogen ion induce a conformational (shape) change that drives the hydrogen ions to transport against the electrochemical gradient.
Due to the constant demand of ATP production, ADP, ATP translocases are in higher abundance than other transporters. [42] [43] ADP, ATP translocase is a small protein, ~30-33 kDa, composed of 6 transmembrane α-helices, that form 3 repeat domains for an overall funnel-like structure in the membrane. Towards the center of the funnel structure it ...
Many MC proteins preferentially catalyze the exchange of one solute for another ().A variety of these substrate carrier proteins, which are involved in energy transfer, have been found in the inner membranes of mitochondria and other eukaryotic organelles such as the peroxisome and facilitate the transport of inorganic ions, nucleotides, amino acids, keto acids and cofactors across the membrane.
The only inconsistency of this mechanism to the ATP-switch model is that the conformation in its resting, nucleotide-free state is different from the expected outward-facing conformation. Although that is the case, the key point is that the NBD does not dimerize unless ATP and binding protein is bound to the transporter. [4] [15] [23] [52] [54]
Adenine nucleotide translocator (ANT), also known as the ADP/ATP translocase (ANT), ADP/ATP carrier protein (AAC) or mitochondrial ADP/ATP carrier, exchanges free ATP with free ADP across the inner mitochondrial membrane. [1] [2] ANT is the most abundant protein in the inner mitochondrial membrane and belongs to the mitochondrial carrier family ...
Facilitated diffusion in cell membrane, showing ion channels and carrier proteins. Facilitated diffusion (also known as facilitated transport or passive-mediated transport) is the process of spontaneous passive transport (as opposed to active transport) of molecules or ions across a biological membrane via specific transmembrane integral proteins. [1]
The mobile cytochrome electron carrier in mitochondria is cytochrome c. Bacteria use a number of different mobile cytochrome electron carriers. Other cytochromes are found within macromolecules such as Complex III and Complex IV. They also function as electron carriers, but in a very different, intramolecular, solid-state environment.