Search results
Results from the WOW.Com Content Network
In chemical nomenclature, the IUPAC nomenclature of organic chemistry is a method of naming organic chemical compounds as recommended [1] [2] by the International Union of Pure and Applied Chemistry (IUPAC). It is published in the Nomenclature of Organic Chemistry (informally called the Blue Book). [3]
The IUPAC's rules for naming organic and inorganic compounds are contained in two publications, known as the Blue Book [1] [2] and the Red Book, [3] respectively. A third publication, known as the Green Book , [ 4 ] recommends the use of symbols for physical quantities (in association with the IUPAP ), while a fourth, the Gold Book , [ 5 ...
IUPAC states that, "As one of its major activities, IUPAC develops Recommendations to establish unambiguous, uniform, and consistent nomenclature and terminology for specific scientific fields, usually presented as: glossaries of terms for specific chemical disciplines; definitions of terms relating to a group of properties; nomenclature of chemical compounds and their classes; terminology ...
IUPAC's Inter-divisional Committee on Nomenclature and Symbols (IUPAC nomenclature) is the recognized world authority in developing standards for naming the chemical elements and compounds. Since its creation, IUPAC has been run by many different committees with different responsibilities. [5]
Nomenclature of Inorganic Chemistry, IUPAC Recommendations 2005 is the 2005 version of Nomenclature of Inorganic Chemistry (which is informally called the Red Book). It is a collection of rules for naming inorganic compounds, as recommended by the International Union of Pure and Applied Chemistry (IUPAC).
The IUPAC Nomenclature for Organic Chemical Transformations is a methodology for naming a chemical reaction.. Traditionally, most chemical reactions, especially in organic chemistry, are named after their inventors, the so-called name reactions, such as Knoevenagel condensation, Wittig reaction, Claisen–Schmidt condensation, Schotten–Baumann reaction, and Diels–Alder reaction.
The main group elements are the elements of groups 1, 2, and 13–18 (i.e. the s-block and p-block). [5] The transition elements are the elements of groups 3–12 (i.e. the d-block) – this in particular includes group 12 (although some sources do not include it). [5] The inner transition elements are f-block elements. [2]
The number of coordination bonds (coordination number) can vary from two in K[Ag(CN) 2] as high as 20 in Th(η 5-C 5 H 5) 4. [ 2 ] One of the most common coordination geometries is octahedral , where six ligands are coordinated to the metal in a symmetrical distribution, leading to the formation of an octahedron if lines were drawn between the ...