Search results
Results from the WOW.Com Content Network
This notation arises from the following geometric relationships: [citation needed] when measuring in radians, an angle of θ radians will correspond to an arc whose length is rθ, where r is the radius of the circle. Thus in the unit circle, the cosine of x function is both the arc and the angle, because the arc of a circle of radius 1 is the ...
Masing-masing ordinat A, B dan D merupakan nilai dari sin θ, tan θ dan csc θ, sedangkan masing-masing absis dari A, C dan E merupakan nilai cos θ, cot θ dan sec θ. العربية: في هذا الرسم، الدوال المثلثية الستة لزاوية اختيارية θ ممثلة إحداثياتٍ ديكارتية للنقاط ...
English: A unit circle with sine (sin), cosine (cos), tangent (tan), cotangent (cot), versine (versin), coversine (cvs), exsecant (exsec), excosecant (excsc) and (indirectly) also secant (sec), cosecant (csc) as well as chord (crd) and arc labeled as trigonometric functions of angle theta. It is designed as alternative construction to "Circle ...
Since C = 2πr, the circumference of a unit circle is 2π. In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1. [1] Frequently, especially in trigonometry, the unit circle is the circle of radius 1 centered at the origin (0, 0) in the Cartesian coordinate system in the Euclidean plane.
The tangent line to the unit circle at the point A, is perpendicular to , and intersects the y - and x-axes at points = (,) and = (,). The coordinates of these points give the values of all trigonometric functions for any arbitrary real value of θ in the following manner.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
All of the right-angled triangles are similar, i.e. the ratios between their corresponding sides are the same. For sin, cos and tan the unit-length radius forms the hypotenuse of the triangle that defines them. The reciprocal identities arise as ratios of sides in the triangles where this unit line is no longer the hypotenuse.