Search results
Results from the WOW.Com Content Network
Isotope separation is the process of concentrating specific isotopes of a chemical element by removing other isotopes. The use of the nuclides produced is varied. The largest variety is used in research (e.g. in chemistry where atoms of "marker" nuclide are used to figure out reaction mechanisms).
Mixing of the isotopic standard with the sample effectively "dilutes" the isotopic enrichment of the standard and this forms the basis for the isotope dilution method. Isotope dilution is classified as a method of internal standardisation, because the standard (isotopically enriched form of analyte) is added directly to the sample. In addition ...
Isotope fractionation occurs during a phase transition, when the ratio of light to heavy isotopes in the involved molecules changes. When water vapor condenses (an equilibrium fractionation), the heavier water isotopes (18 O and 2 H) become enriched in the liquid phase while the lighter isotopes (16 O and 1 H) tend toward the vapor phase. [1]
The Zippe-type centrifuge is a gas centrifuge designed to enrich the rare fissile isotope uranium-235 (235 U) from the mixture of isotopes found in naturally occurring uranium compounds. The isotopic separation is based on the slight difference in mass of the isotopes.
A chart or table of nuclides maps the nuclear, or radioactive, behavior of nuclides, as it distinguishes the isotopes of an element.It contrasts with a periodic table, which only maps their chemical behavior, since isotopes (nuclides that are variants of the same element) do not differ chemically to any significant degree, with the exception of hydrogen.
The 12 C isotopically pure, (or in practice 15-fold enrichment of isotopic number, 12 over 13 for carbon) diamond gives a 50% higher thermal conductivity than the already high value of 900-2000 W/(m·K) for a normal diamond, which contains the natural isotopic mixture of 98.9% 12 C and 1.1% 13 C.
The δ values and absolute isotope ratios of common reference materials are summarized in Table 1 and described in more detail below. Alternative values for the absolute isotopic ratios of reference materials, differing only modestly from those in Table 1, are presented in Table 2.5 of Sharp (2007) [1] (a text freely available online), as well as Table 1 of the 1993 IAEA report on isotopic ...
Archaeological materials, such as bone, organic residues, hair, or sea shells, can serve as substrates for isotopic analysis. Carbon, nitrogen and zinc isotope ratios are used to investigate the diets of past people; these isotopic systems can be used with others, such as strontium or oxygen, to answer questions about population movements and cultural interactions, such as trade.