Search results
Results from the WOW.Com Content Network
Peak-to-peak amplitude (abbreviated p–p or PtP or PtoP) is the change between peak (highest amplitude value) and trough (lowest amplitude value, which can be negative). With appropriate circuitry, peak-to-peak amplitudes of electric oscillations can be measured by meters or by viewing the waveform on an oscilloscope .
In quantum mechanics, a probability amplitude is a complex number used for describing the behaviour of systems. The square of the modulus of this quantity represents a probability density . Probability amplitudes provide a relationship between the quantum state vector of a system and the results of observations of that system, a link was first ...
In this type the derivative (slope) of the wave's amplitude (in sound waves the pressure, in electromagnetic waves, the current) is forced to zero at the boundary. So there is an amplitude maximum (antinode) at the boundary, the first node occurs a quarter wavelength from the end, and the other nodes are at half wavelength intervals from there:
In physics and engineering, the envelope of an oscillating signal is a smooth curve outlining its extremes. [1] The envelope thus generalizes the concept of a constant amplitude into an instantaneous amplitude. The figure illustrates a modulated sine wave varying between an upper envelope and a lower envelope. The envelope function may be a ...
There is a nonzero probability amplitude to find a significant fluctuation in the vacuum value of the field Φ(x) if one measures it locally (or, to be more precise, if one measures an operator obtained by averaging the field over a small region). Furthermore, the dynamics of the fields tend to favor spatially correlated fluctuations to some ...
In quantum physics, the scattering amplitude is the probability amplitude of the outgoing spherical wave relative to the incoming plane wave in a stationary-state scattering process. [1] At large distances from the centrally symmetric scattering center, the plane wave is described by the wavefunction [ 2 ]
It follows that, for two sinusoidal signals and with same frequency and amplitudes and , and has phase shift +90° relative to , the sum + is a sinusoidal signal with the same frequency, with amplitude and phase shift < < + from , such that = + = /.
These complex amplitude vectors are not functions of time, as they are understood to refer to oscillations over all time. A phasor such as E m is understood to signify a sinusoidally varying field whose instantaneous amplitude E(t) follows the real part of E m e jωt where ω is the (radian) frequency of the sinusoidal wave being considered.