Search results
Results from the WOW.Com Content Network
then has expectation equal to the average measured value and standard deviation equal to the standard deviation of the average. When the uncertainty is evaluated from a small number of measured values (regarded as instances of a quantity characterized by a Gaussian distribution), the corresponding distribution can be taken as a t-distribution. [11]
In physical experiments uncertainty analysis, or experimental uncertainty assessment, deals with assessing the uncertainty in a measurement.An experiment designed to determine an effect, demonstrate a law, or estimate the numerical value of a physical variable will be affected by errors due to instrumentation, methodology, presence of confounding effects and so on.
The entropy rate of a data source is the average number of bits per symbol needed to encode it. Shannon's experiments with human predictors show an information rate between 0.6 and 1.3 bits per character in English; [ 21 ] the PPM compression algorithm can achieve a compression ratio of 1.5 bits per character in English text.
Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables (+) = + + (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...
Uncertainty quantification (UQ) is the science of quantitative characterization and estimation of uncertainties in both computational and real world applications. It tries to determine how likely certain outcomes are if some aspects of the system are not exactly known.
Experimental uncertainty analysis is a technique that analyses a derived quantity, based on the uncertainties in the experimentally measured quantities that are used in some form of mathematical relationship ("model") to calculate that derived quantity.
Uncertainty is traditionally modelled by a probability distribution, as developed by Kolmogorov, [1] Laplace, de Finetti, [2] Ramsey, Cox, Lindley, and many others.However, this has not been unanimously accepted by scientists, statisticians, and probabilists: it has been argued that some modification or broadening of probability theory is required, because one may not always be able to provide ...
The Performance Test Standard PTC 19.1-2005 "Test Uncertainty", ... in the calculated average of ... be used to determine the number of lines per millimetre of the ...