enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Differentiable function - Wikipedia

    en.wikipedia.org/wiki/Differentiable_function

    It is differentiable everywhere except at the point x = 0, where it makes a sharp turn as it crosses the y-axis. A cusp on the graph of a continuous function. At zero, the function is continuous but not differentiable. If f is differentiable at a point x 0, then f must also be continuous at x 0. In particular, any differentiable function must ...

  3. Lipschitz continuity - Wikipedia

    en.wikipedia.org/wiki/Lipschitz_continuity

    An everywhere differentiable function g : R → R is Lipschitz continuous (with K = sup |g′(x)|) if and only if it has a bounded first derivative; one direction follows from the mean value theorem. In particular, any continuously differentiable function is locally Lipschitz, as continuous functions are locally bounded so its gradient is ...

  4. Continuous function - Wikipedia

    en.wikipedia.org/wiki/Continuous_function

    is everywhere continuous. However, it is not differentiable at = (but is so everywhere else). Weierstrass's function is also everywhere continuous but nowhere differentiable. The derivative f′(x) of a differentiable function f(x) need not be continuous. If f′(x) is continuous, f(x) is said to be continuously differentiable.

  5. Rolle's theorem - Wikipedia

    en.wikipedia.org/wiki/Rolle's_theorem

    This function is continuous on the closed interval [−r, r] and differentiable in the open interval (−r, r), but not differentiable at the endpoints −r and r. Since f (−r) = f (r), Rolle's theorem applies, and indeed, there is a point where the derivative of f is zero. The theorem applies even when the function cannot be differentiated ...

  6. Smoothness - Wikipedia

    en.wikipedia.org/wiki/Smoothness

    If is -differentiable on , then it is at least in the class since ′, ″, …, are continuous on . The function f {\displaystyle f} is said to be infinitely differentiable , smooth , or of class C ∞ , {\displaystyle C^{\infty },} if it has derivatives of all orders on U . {\displaystyle U.}

  7. Rademacher's theorem - Wikipedia

    en.wikipedia.org/wiki/Rademacher's_theorem

    In mathematical analysis, Rademacher's theorem, named after Hans Rademacher, states the following: If U is an open subset of R n and f: U → R m is Lipschitz continuous, then f is differentiable almost everywhere in U; that is, the points in U at which f is not differentiable form a set of Lebesgue measure zero. Differentiability here refers ...

  8. Inverse function theorem - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_theorem

    For functions of a single variable, the theorem states that if is a continuously differentiable function with nonzero derivative at the point ; then is injective (or bijective onto the image) in a neighborhood of , the inverse is continuously differentiable near = (), and the derivative of the inverse function at is the reciprocal of the derivative of at : ′ = ′ = ′ (()).

  9. Darboux's theorem (analysis) - Wikipedia

    en.wikipedia.org/wiki/Darboux's_theorem_(analysis)

    By Darboux's theorem, the derivative of any differentiable function is a Darboux function. In particular, the derivative of the function ⁡ (/) is a Darboux function even though it is not continuous at one point. An example of a Darboux function that is nowhere continuous is the Conway base 13 function.