enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kernel methods for vector output - Wikipedia

    en.wikipedia.org/wiki/Kernel_methods_for_vector...

    A non-trivial way to mix the latent functions is by convolving a base process with a smoothing kernel. If the base process is a Gaussian process, the convolved process is Gaussian as well. We can therefore exploit convolutions to construct covariance functions. [20] This method of producing non-separable kernels is known as process convolution.

  3. Gather/scatter (vector addressing) - Wikipedia

    en.wikipedia.org/wiki/Gather/scatter_(vector...

    Examples of its use include sparse linear algebra operations, [1] sorting algorithms, fast Fourier transforms, [2] and some computational graph theory problems. [3] It is the vector equivalent of register indirect addressing , with gather involving indexed reads, and scatter, indexed writes.

  4. Model-based clustering - Wikipedia

    en.wikipedia.org/wiki/Model-based_clustering

    Several of these models correspond to well-known heuristic clustering methods. For example, k-means clustering is equivalent to estimation of the EII clustering model using the classification EM algorithm. [8] The Bayesian information criterion (BIC) can be used to choose the best clustering model as well as the number of clusters. It can also ...

  5. Determining the number of clusters in a data set - Wikipedia

    en.wikipedia.org/wiki/Determining_the_number_of...

    The average silhouette of the data is another useful criterion for assessing the natural number of clusters. The silhouette of a data instance is a measure of how closely it is matched to data within its cluster and how loosely it is matched to data of the neighboring cluster, i.e., the cluster whose average distance from the datum is lowest. [8]

  6. Discriminative model - Wikipedia

    en.wikipedia.org/wiki/Discriminative_model

    For example, in object recognition, is likely to be a vector of raw pixels (or features extracted from the raw pixels of the image). Within a probabilistic framework, this is done by modeling the conditional probability distribution P ( y | x ) {\displaystyle P(y|x)} , which can be used for predicting y {\displaystyle y} from x {\displaystyle x} .

  7. Automatic clustering algorithms - Wikipedia

    en.wikipedia.org/wiki/Automatic_Clustering...

    Automatic clustering algorithms are algorithms that can perform clustering without prior knowledge of data sets. In contrast with other cluster analysis techniques, automatic clustering algorithms can determine the optimal number of clusters even in the presence of noise and outlier points. [1] [needs context]

  8. Clustering high-dimensional data - Wikipedia

    en.wikipedia.org/wiki/Clustering_high...

    Clustering high-dimensional data is the cluster analysis of data with anywhere from a few dozen to many thousands of dimensions.Such high-dimensional spaces of data are often encountered in areas such as medicine, where DNA microarray technology can produce many measurements at once, and the clustering of text documents, where, if a word-frequency vector is used, the number of dimensions ...

  9. Information bottleneck method - Wikipedia

    en.wikipedia.org/wiki/Information_bottleneck_method

    The information bottleneck method is a technique in information theory introduced by Naftali Tishby, Fernando C. Pereira, and William Bialek. [1] It is designed for finding the best tradeoff between accuracy and complexity (compression) when summarizing (e.g. clustering) a random variable X, given a joint probability distribution p(X,Y) between X and an observed relevant variable Y - and self ...