enow.com Web Search

  1. Ads

    related to: dt 990 edition frequency response system

Search results

  1. Results from the WOW.Com Content Network
  2. Discrete-time Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Discrete-time_Fourier...

    From uniformly spaced samples it produces a function of frequency that is a periodic summation of the continuous Fourier transform of the original continuous function. In simpler terms, when you take the DTFT of regularly-spaced samples of a continuous signal, you get repeating (and possibly overlapping) copies of the signal's frequency ...

  3. Frequency response - Wikipedia

    en.wikipedia.org/wiki/Frequency_response

    Magnitude response of a low pass filter with 6 dB per octave or 20 dB per decade roll-off. Measuring the frequency response typically involves exciting the system with an input signal and measuring the resulting output signal, calculating the frequency spectra of the two signals (for example, using the fast Fourier transform for discrete signals), and comparing the spectra to isolate the ...

  4. Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Fourier_transform

    In this case, ĝ(ξ) represents the frequency response of the system. Conversely, if f ( x ) can be decomposed as the product of two square integrable functions p ( x ) and q ( x ) , then the Fourier transform of f ( x ) is given by the convolution of the respective Fourier transforms p̂ ( ξ ) and q̂ ( ξ ) .

  5. Finite impulse response - Wikipedia

    en.wikipedia.org/wiki/Finite_impulse_response

    The result is a finite impulse response filter whose frequency response is modified from that of the IIR filter. Multiplying the infinite impulse by the window function in the time domain results in the frequency response of the IIR being convolved with the Fourier transform (or DTFT) of the window function. If the window's main lobe is narrow ...

  6. Chirp spectrum - Wikipedia

    en.wikipedia.org/wiki/Chirp_spectrum

    The first part of the expression, i.e. the 'sin(x)/x' part, is the frequency response of the sample and hold. Its amplitude decreases with frequency and it falls to 63% of its peak value at half the sampling frequency and it is zero at multiples of that frequency (since f s =1/W).

  7. Rectangular function - Wikipedia

    en.wikipedia.org/wiki/Rectangular_function

    Plot of normalized ⁡ function (i.e. ⁡ ()) with its spectral frequency components.. The unitary Fourier transforms of the rectangular function are [2] ⁡ = ⁡ = ⁡ (), using ordinary frequency f, where is the normalized form [10] of the sinc function and ⁡ = ⁡ (/) / = ⁡ (/), using angular frequency , where is the unnormalized form of the sinc function.

  8. Group delay and phase delay - Wikipedia

    en.wikipedia.org/wiki/Group_delay_and_phase_delay

    The group delay and phase delay properties of a linear time-invariant (LTI) system are functions of frequency, giving the time from when a frequency component of a time varying physical quantity—for example a voltage signal—appears at the LTI system input, to the time when a copy of that same frequency component—perhaps of a different physical phenomenon—appears at the LTI system output.

  9. Final value theorem - Wikipedia

    en.wikipedia.org/wiki/Final_value_theorem

    For a system described by the transfer function = +, the final value theorem appears to predict the final value of the impulse response to be 0 and the final value of the step response to be 1. However, neither time-domain limit exists, and so the final value theorem predictions are not valid.

  1. Ads

    related to: dt 990 edition frequency response system