enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Paraboloidal coordinates - Wikipedia

    en.wikipedia.org/wiki/Paraboloidal_coordinates

    Similarly, the separated equations for the Laplace equation can be obtained by setting = in the above. Each of the separated equations can be cast in the form of the Baer equation . Direct solution of the equations is difficult, however, in part because the separation constants α 2 {\displaystyle \alpha _{2}} and α 3 {\displaystyle \alpha _{3 ...

  3. Paraboloid - Wikipedia

    en.wikipedia.org/wiki/Paraboloid

    On the axis of a circular paraboloid, there is a point called the focus (or focal point), such that, if the paraboloid is a mirror, light (or other waves) from a point source at the focus is reflected into a parallel beam, parallel to the axis of the paraboloid. This also works the other way around: a parallel beam of light that is parallel to ...

  4. Parabolic reflector - Wikipedia

    en.wikipedia.org/wiki/Parabolic_reflector

    A circular paraboloid is theoretically unlimited in size. Any practical reflector uses just a segment of it. Often, the segment includes the vertex of the paraboloid, where its curvature is greatest, and where the axis of symmetry intersects the paraboloid. However, if the reflector is used to focus incoming energy onto a receiver, the shadow ...

  5. Ruled surface - Wikipedia

    en.wikipedia.org/wiki/Ruled_surface

    For example, a cone is formed by keeping one point of a line fixed whilst moving another point along a circle. A surface is doubly ruled if through every one of its points there are two distinct lines that lie on the surface. The hyperbolic paraboloid and the hyperboloid of one sheet are doubly ruled surfaces.

  6. Parabolic coordinates - Wikipedia

    en.wikipedia.org/wiki/Parabolic_coordinates

    The red paraboloid corresponds to τ=2, the blue paraboloid corresponds to σ=1, and the yellow half-plane corresponds to φ=-60°. The three surfaces intersect at the point P (shown as a black sphere) with Cartesian coordinates roughly (1.0, -1.732, 1.5).

  7. Quadric - Wikipedia

    en.wikipedia.org/wiki/Quadric

    In mathematics, a quadric or quadric surface (quadric hypersurface in higher dimensions), is a generalization of conic sections (ellipses, parabolas, and hyperbolas).It is a hypersurface (of dimension D) in a (D + 1)-dimensional space, and it is defined as the zero set of an irreducible polynomial of degree two in D + 1 variables; for example, D = 1 in the case of conic sections.

  8. Fermat's spiral - Wikipedia

    en.wikipedia.org/wiki/Fermat's_spiral

    The Fermat spiral with polar equation = can be converted to the Cartesian coordinates (x, y) by using the standard conversion formulas x = r cos φ and y = r sin φ.Using the polar equation for the spiral to eliminate r from these conversions produces parametric equations for one branch of the curve:

  9. Hyperboloid - Wikipedia

    en.wikipedia.org/wiki/Hyperboloid

    In geometry, a hyperboloid of revolution, sometimes called a circular hyperboloid, is the surface generated by rotating a hyperbola around one of its principal axes. A hyperboloid is the surface obtained from a hyperboloid of revolution by deforming it by means of directional scalings , or more generally, of an affine transformation .