Search results
Results from the WOW.Com Content Network
The principal cube root is the cube root with the largest real part. In the case of negative real numbers, the largest real part is shared by the two nonreal cube roots, and the principal cube root is the one with positive imaginary part. So, for negative real numbers, the real cube root is not the principal cube root. For positive real numbers ...
Here is an angle in the unit circle; taking 1 / 3 of that angle corresponds to taking a cube root of a complex number; adding −k 2 π / 3 for k = 1, 2 finds the other cube roots; and multiplying the cosines of these resulting angles by corrects for scale.
The cube of a number n is denoted n 3, using a superscript 3, [a] for example 2 3 = 8. The cube operation can also be defined for any other mathematical expression, for example (x + 1) 3. The cube is also the number multiplied by its square: n 3 = n × n 2 = n × n × n. The cube function is the function x ↦ x 3 (often denoted y = x 3) that
In the case of two nested square roots, the following theorem completely solves the problem of denesting. [2]If a and c are rational numbers and c is not the square of a rational number, there are two rational numbers x and y such that + = if and only if is the square of a rational number d.
The cube root law is an observation in political science that the number of members of a unicameral legislature, or of the lower house of a bicameral legislature, is about the cube root of the population being represented. [1] The rule was devised by Estonian political scientist Rein Taagepera in his 1972 paper "The size of national assemblies ...
whose solutions are called roots of the function. The derivative of a cubic function is a quadratic function. A cubic function with real coefficients has either one or three real roots (which may not be distinct); [1] all odd-degree polynomials with real coefficients have at least one real root.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The set of rational numbers is not complete. For example, the sequence (1; 1.4; 1.41; 1.414; 1.4142; 1.41421; ...), where each term adds a digit of the decimal expansion of the positive square root of 2, is Cauchy but it does not converge to a rational number (in the real numbers, in contrast, it converges to the positive square root of 2).