enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Alveolar gas equation - Wikipedia

    en.wikipedia.org/wiki/Alveolar_gas_equation

    The alveolar gas equation is the method for calculating partial pressure of alveolar oxygen (p A O 2). The equation is used in assessing if the lungs are properly transferring oxygen into the blood. The alveolar air equation is not widely used in clinical medicine, probably because of the complicated appearance of its classic forms.

  3. Alveolar–arterial gradient - Wikipedia

    en.wikipedia.org/wiki/Alveolar–arterial_gradient

    The waterfall represents the alveolar and capillary walls, and the second part of the river represents the arterial system. The river empties into a lake, which can represent end-organ perfusion. The A-a gradient helps to determine where there is flow obstruction. [2] For example, consider hypoventilation.

  4. Dead space (physiology) - Wikipedia

    en.wikipedia.org/wiki/Dead_space_(physiology)

    Just as dead space wastes a fraction of the inhaled breath, dead space dilutes alveolar air during exhalation. By quantifying this dilution, it is possible to measure physiological dead space, employing the concept of mass balance, as expressed by the Bohr equation. [8] [9]

  5. Oxygen cascade - Wikipedia

    en.wikipedia.org/wiki/Oxygen_cascade

    Dry air: 159: Air is ~21% oxygen [2] Moist air: 150: Air is humidified in the respiratory tract [2] Alveolar air: 110-100: Alveolar air includes exhaust gases such as CO 2 [2] [3] Arterial blood (PaO 2) 98-95: Oxygen must cross the alveoli, leading to a drop in PO 2 called the alveolar-to-arterial gradient (typically a drop of 1-5 mmHg, but ...

  6. Ventilation/perfusion ratio - Wikipedia

    en.wikipedia.org/wiki/Ventilation/perfusion_ratio

    Therefore, under these conditions, the ideal ventilation perfusion ratio would be about 0.95. If one were to consider humidified air (with less oxygen), then the ideal v/q ratio would be in the vicinity of 1.0, thus leading to concept of ventilation-perfusion equality or ventilation-perfusion matching. This matching may be assessed in the lung ...

  7. Pulmonary gas pressures - Wikipedia

    en.wikipedia.org/wiki/Pulmonary_gas_pressures

    The alveolar oxygen partial pressure is lower than the atmospheric O 2 partial pressure for two reasons. Firstly, as the air enters the lungs, it is humidified by the upper airway and thus the partial pressure of water vapour (47 mmHg) reduces the oxygen partial pressure to about 150 mmHg.

  8. Minute ventilation - Wikipedia

    en.wikipedia.org/wiki/Minute_ventilation

    Alveolar gas volume: V L: Actual volume of the lung including the volume of the conducting airway. FVC: Forced vital capacity: the determination of the vital capacity from a maximally forced expiratory effort: FEV t: Forced expiratory volume (time): a generic term indicating the volume of air exhaled under forced conditions in the first t ...

  9. Diffusing capacity - Wikipedia

    en.wikipedia.org/wiki/Diffusing_capacity

    The anatomy of the airways means inspired air must pass through the mouth, trachea, bronchi and bronchioles (anatomical dead space) before it gets to the alveoli where gas exchange will occur; on exhalation, alveolar gas must return along the same path, and so the exhaled sample will be purely alveolar only after a 500 to 1,000 ml of gas has ...