Search results
Results from the WOW.Com Content Network
The Heyland diagram is an approximate representation of a circle diagram applied to induction motors, which assumes that stator input voltage, rotor resistance and rotor reactance are constant and stator resistance and core loss are zero.
Rotor (lower left) and stator (upper right) of an electric motor Stator of a 3-phase AC-motor Stator of a brushless DC motor from computer cooler fan.. The stator is the stationary part of a rotary system, [1] found in electric generators, electric motors, sirens, mud motors, or biological rotors (such as bacterial flagella or ATP synthase).
A DC motor consists of two parts: a rotor and a stator. [3] The stator consists of field windings while the rotor (also called the armature) consists of an armature winding. [4] When both the armature and the field windings are excited by a DC supply, current flows through the windings and a magnetic flux proportional to the current is produced ...
The cause of induced current in the rotor windings is the rotating stator magnetic field, so to oppose the change in rotor-winding currents the rotor turns in the direction of the stator magnetic field. The rotor accelerates until the magnitude of induced rotor current and torque balances the load on the rotor.
Air moves from left to right. Each compressor stage is a row of rotor blades which give the air tangential velocity followed by a stationary row of stator blades which slow the air and raise its static pressure. The top casing holding the stators has been removed to show the rotor blades.
In most designs, the productive flux links the rotor and stator; the flux that links just the stator (or the rotor) to itself is useless for energy conversion and thus is considered to be wasted leakage flux (stray flux). The corresponding inductance is called leakage inductance.
Power to the rotor is connected by slip rings and brushes, represented by the circles at the ends of the rotor winding. As shown, the rotor induces equal voltages in the 120° and 240° windings, and no voltage in the 0° winding. [Vex] does not necessarily need to be connected to the common lead of the stator star windings. Simple two-synchro ...
As the rotor approaches synchronous speed and slip goes to zero, this magnetizes and aligns with the stator field, causing the rotor to "lock" to the rotating stator field. A major advantage of the hysteresis motor is that since the lag angle δ is independent of speed, it develops constant torque from startup to synchronous speed.