Search results
Results from the WOW.Com Content Network
For example, to factor =, the first try for a is the square root of 5959 rounded up to the next integer, which is 78. Then b 2 = 78 2 − 5959 = 125 {\displaystyle b^{2}=78^{2}-5959=125} . Since 125 is not a square, a second try is made by increasing the value of a by 1.
RSA-120 1993-06-09 ppmpqs ... and 14.2 hours to find the factors using the square root) ... (this pair has a yield of relations approximately 13.5 times that of a ...
As 120 is a factorial and one less than a square (! =), it—with 11—is one of the few Brown number pairs. 120 appears in Pierre de Fermat's modified Diophantine problem as the largest known integer of the sequence 1, 3, 8, 120. Fermat wanted to find another positive integer that, when multiplied by any of the other numbers in the sequence ...
The square root of a positive integer is the product of the roots of its prime factors, because the square root of a product is the product of the square roots of the factors. Since p 2 k = p k , {\textstyle {\sqrt {p^{2k}}}=p^{k},} only roots of those primes having an odd power in the factorization are necessary.
A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...
Yves Gallot's proth.exe has been used to find factors of large Fermat numbers. Édouard Lucas, improving Euler's above-mentioned result, proved in 1878 that every factor of the Fermat number , with n at least 2, is of the form + + (see Proth number), where k is a positive integer. By itself, this makes it easy to prove the primality of the ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The polynomial x 2 + cx + d, where a + b = c and ab = d, can be factorized into (x + a)(x + b).. In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind.