Search results
Results from the WOW.Com Content Network
The number of combinatorially distinct nets of -dimensional hypercubes can be found by representing these nets as a tree on nodes describing the pattern by which pairs of faces of the hypercube are glued together to form a net, together with a perfect matching on the complement graph of the tree describing the pairs of faces that are opposite ...
Eleven nets for the cube are shown here. [32] In analytic geometry, a cube may be constructed using the Cartesian coordinate systems. For a cube centered at the origin, with edges parallel to the axes and with an edge length of 2, the Cartesian coordinates of the vertices are (,,), a unit cube. [33]
That is, any polyhedral net formed by unfolding the faces of the polyhedron onto a flat surface, together with gluing instructions describing which faces should be connected to each other, uniquely determines the shape of the original polyhedron. For instance, if six squares are connected in the pattern of a cube, then they must form a cube ...
In mathematics, more specifically in general topology and related branches, a net or Moore–Smith sequence is a function whose domain is a directed set. The codomain of this function is usually some topological space. Nets directly generalize the concept of a sequence in a metric space.
Routing method for a hypercube network is referred to as E-Cube routing. The distance between two nodes in the network can be given by Hamming weight of (number of ones in) the XOR-operation between their respective binary labels. The distance between Node 1 (represented as ‘01’) and Node 2 (represented as ‘10’) in the network given by:
The extended ƒ-vector is formed by concatenating the number one at each end of the ƒ-vector, counting the number of objects at all levels of the face lattice; on the left side of the vector, f −1 = 1 counts the empty set as a face, while on the right side, f d = 1 counts P itself. For the cube the extended ƒ-vector is (1,8,12,6,1) and for ...
In geometry, the truncated cube, or truncated hexahedron, is an Archimedean solid. It has 14 regular faces (6 octagonal and 8 triangular ), 36 edges, and 24 vertices. If the truncated cube has unit edge length, its dual triakis octahedron has edges of lengths 2 and δ S +1 , where δ S is the silver ratio, √ 2 +1.
Burnside's lemma can compute the number of rotationally distinct colourings of the faces of a cube using three colours.. Let X be the set of 3 6 possible face color combinations that can be applied to a fixed cube, and let the rotation group G of the cube act on X by moving the colored faces: two colorings in X belong to the same orbit precisely when one is a rotation of the other.