Search results
Results from the WOW.Com Content Network
Indeterminate form is a mathematical expression that can obtain any value depending on circumstances. In calculus , it is usually possible to compute the limit of the sum, difference, product, quotient or power of two functions by taking the corresponding combination of the separate limits of each respective function.
Here is a basic example involving the exponential function, which involves the indeterminate form 0 / 0 at x = 0: + = (+) = + = This is a more elaborate example involving 0 / 0 . Applying L'Hôpital's rule a single time still results in an indeterminate form.
This rule uses derivatives to find limits of indeterminate forms 0/0 or ±∞/∞, and only applies to such cases. Other indeterminate forms may be manipulated into this form. Given two functions f(x) and g(x), defined over an open interval I containing the desired limit point c, then if:
[22] Knuth (1992) contends more strongly that 0 0 "has to be 1"; he draws a distinction between the value 0 0, which should equal 1, and the limiting form 0 0 (an abbreviation for a limit of f(t) g(t) where f(t), g(t) → 0), which is an indeterminate form: "Both Cauchy and Libri were right, but Libri and his defenders did not understand why ...
Convolution. Cauchy product –is the discrete convolution of two sequences; Farey sequence – the sequence of completely reduced fractions between 0 and 1; Oscillation – is the behaviour of a sequence of real numbers or a real-valued function, which does not converge, but also does not diverge to +∞ or −∞; and is also a quantitative measure for that.
The expressions 0 0, ∞ 0 and 1 ∞ are considered indeterminate forms when they occur as limits (just like ∞ × 0), and the question of whether zero to the zero power should be defined as 1 has divided opinion. If the output is considered as undefined when a parameter is undefined, then pow(1, qNaN) should produce a qNaN.
Many authors do not name this test or give it a shorter name. [2] When testing if a series converges or diverges, this test is often checked first due to its ease of use. In the case of p-adic analysis the term test is a necessary and sufficient condition for convergence due to the non-Archimedean ultrametric triangle inequality.
A fundamental property of an indeterminate is that it can be substituted with any mathematical expressions to which the same operations apply as the operations applied to the indeterminate. Some authors of abstract algebra textbooks define an indeterminate over a ring R as an element of a larger ring that is transcendental over R.