enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Unique factorization domain - Wikipedia

    en.wikipedia.org/wiki/Unique_factorization_domain

    A Noetherian integral domain is a UFD if and only if every height 1 prime ideal is principal (a proof is given at the end). Also, a Dedekind domain is a UFD if and only if its ideal class group is trivial. In this case, it is in fact a principal ideal domain. In general, for an integral domain A, the following conditions are equivalent: A is a UFD.

  3. List of number fields with class number one - Wikipedia

    en.wikipedia.org/wiki/List_of_number_fields_with...

    The class number of a number field is by definition the order of the ideal class group of its ring of integers. Thus, a number field has class number 1 if and only if its ring of integers is a principal ideal domain (and thus a unique factorization domain). The fundamental theorem of arithmetic says that Q has class number 1.

  4. GCD domain - Wikipedia

    en.wikipedia.org/wiki/GCD_domain

    A Bézout domain (i.e., an integral domain where every finitely generated ideal is principal) is a GCD domain. Unlike principal ideal domains (where every ideal is principal), a Bézout domain need not be a unique factorization domain; for instance the ring of entire functions is a non-atomic Bézout domain, and there are many other

  5. Primitive part and content - Wikipedia

    en.wikipedia.org/wiki/Primitive_part_and_content

    Then the factorization problem is reduced to factorize separately the content and the primitive part. Content and primitive part may be generalized to polynomials over the rational numbers, and, more generally, to polynomials over the field of fractions of a unique factorization domain.

  6. Gauss's lemma (polynomials) - Wikipedia

    en.wikipedia.org/wiki/Gauss's_lemma_(polynomials)

    In the case of coefficients in a unique factorization domain R, "rational numbers" must be replaced by "field of fractions of R". This implies that, if R is either a field, the ring of integers, or a unique factorization domain, then every polynomial ring (in one or several indeterminates) over R is a unique factorization domain. Another ...

  7. Ideal class group - Wikipedia

    en.wikipedia.org/wiki/Ideal_class_group

    In this sense, the ideal class group measures how far R is from being a principal ideal domain, and hence from satisfying unique prime factorization (Dedekind domains are unique factorization domains if and only if they are principal ideal domains). The number of ideal classes (the class number of R) may be infinite in general.

  8. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    This lack of unique factorization is a major difficulty for solving Diophantine equations. For example, many wrong proofs of Fermat's Last Theorem (probably including Fermat's "truly marvelous proof of this, which this margin is too narrow to contain") were based on the implicit supposition of unique factorization.

  9. Irreducible element - Wikipedia

    en.wikipedia.org/wiki/Irreducible_element

    If is an integral domain, then is an irreducible element of if and only if, for all ,, the equation = implies that the ideal generated by is equal to the ideal generated by or equal to the ideal generated by . This equivalence does not hold for general commutative rings, which is why the assumption of the ring having no nonzero zero divisors is ...