Search results
Results from the WOW.Com Content Network
The geometric distribution is the only memoryless discrete probability distribution. [4] It is the discrete version of the same property found in the exponential distribution . [ 1 ] : 228 The property asserts that the number of previously failed trials does not affect the number of future trials needed for a success.
Golomb coding is a lossless data compression method using a family of data compression codes invented by Solomon W. Golomb in the 1960s. Alphabets following a geometric distribution will have a Golomb code as an optimal prefix code, [1] making Golomb coding highly suitable for situations in which the occurrence of small values in the input stream is significantly more likely than large values.
The number of claims N is a random variable, which is said to have a "claim number distribution", and which can take values 0, 1, 2, .... etc.. For the "Panjer recursion", the probability distribution of N has to be a member of the Panjer class, otherwise known as the (a,b,0) class of distributions. This class consists of all counting random ...
In probability theory and statistics, the hypergeometric distribution is a discrete probability distribution that describes the probability of successes (random draws for which the object drawn has a specified feature) in draws, without replacement, from a finite population of size that contains exactly objects with that feature, wherein each draw is either a success or a failure.
In graph theory, a random geometric graph (RGG) is the mathematically simplest spatial network, namely an undirected graph constructed by randomly placing N nodes in some metric space (according to a specified probability distribution) and connecting two nodes by a link if and only if their distance is in a given range, e.g. smaller than a certain neighborhood radius, r.
In probability theory, the matrix geometric method is a method for the analysis of quasi-birth–death processes, continuous-time Markov chain whose transition rate matrices with a repetitive block structure. [1] The method was developed "largely by Marcel F. Neuts and his students starting around 1975." [2]
Chernoff bounds may also be applied to general sums of independent, bounded random variables, regardless of their distribution; this is known as Hoeffding's inequality. The proof follows a similar approach to the other Chernoff bounds, but applying Hoeffding's lemma to bound the moment generating functions (see Hoeffding's inequality ).
An algorithm is fundamentally a set of rules or defined procedures that is typically designed and used to solve a specific problem or a broad set of problems.. Broadly, algorithms define process(es), sets of rules, or methodologies that are to be followed in calculations, data processing, data mining, pattern recognition, automated reasoning or other problem-solving operations.