Search results
Results from the WOW.Com Content Network
Download as PDF; Printable version; ... and hence a Riemannian metric. ... Scott A. (2010), Families of Riemann Surfaces and Weil-Petersson Geometry, CBMS Reg. Conf ...
In Riemannian geometry and pseudo-Riemannian geometry, the Gauss–Codazzi equations (also called the Gauss–Codazzi–Weingarten-Mainardi equations or Gauss–Peterson–Codazzi formulas [1]) are fundamental formulas that link together the induced metric and second fundamental form of a submanifold of (or immersion into) a Riemannian or pseudo-Riemannian manifold.
Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, defined as smooth manifolds with a Riemannian metric (an inner product on the tangent space at each point that varies smoothly from point to point). This gives, in particular, local notions of angle, length of curves, surface area and volume.
Let be a smooth manifold and let be a one-parameter family of Riemannian or pseudo-Riemannian metrics. Suppose that it is a differentiable family in the sense that for any smooth coordinate chart, the derivatives v i j = ∂ ∂ t ( ( g t ) i j ) {\displaystyle v_{ij}={\frac {\partial }{\partial t}}{\big (}(g_{t})_{ij}{\big )}} exist and are ...
In differential geometry, Riemannian geometry is the study of smooth manifolds with Riemannian metrics; i.e. a choice of positive-definite quadratic form on a manifold's tangent spaces which varies smoothly from point to point. This gives in particular local ideas of angle, length of curves, and volume.
Riemannian Geometry (PDF). Princeton: Princeton University Press. OCLC 5836010. Eisenhart, Luther Pfahler (1939). Coordinate Geometry. Dover Publishing. [7] Eisenhart, Luther Pfahler (1927). Non-Riemannian geometry (PDF). New York: American Mathematical Society. [8] Eisenhart, Luther Pfahler (1909). A treatise on the differential geometry of ...
In particular, on a closed Riemannian manifold of negative Ricci curvature, every Killing vector field is identically zero. Since the isometry group of a complete Riemannian manifold is a Lie group whose Lie algebra is naturally identified with the vector space of Killing vector fields, it follows that the isometry group is zero-dimensional. [4]
The fundamental theorem of Riemannian geometry states that on any Riemannian manifold (or pseudo-Riemannian manifold) there is a unique affine connection that is torsion-free and metric-compatible, called the Levi-Civita connection or (pseudo-) Riemannian connection of the given metric.