Search results
Results from the WOW.Com Content Network
The constant is called the modulus of elasticity (or just modulus) while its reciprocal is called the modulus of compliance (or just compliance). There are three postulates that define the ideal elastic behaviour: (1) the strain response to each level of applied stress (or vice versa) has a unique equilibrium value;
Elastic constants are specific parameters that quantify the stiffness of a material in response to applied stresses and are fundamental in defining the elastic properties of materials. These constants form the elements of the stiffness matrix in tensor notation, which relates stress to strain through linear equations in anisotropic materials.
Dependence of dimensionless deformation upon dimensionless time under constant stress. If we suddenly apply some constant stress to Kelvin–Voigt material, then the deformations would approach the deformation for the pure elastic material / with the difference decaying exponentially: [4]
The elastic components, as previously mentioned, can be modeled as springs of elastic constant E, given the formula: = where σ is the stress, E is the elastic modulus of the material, and ε is the strain that occurs under the given stress, similar to Hooke's law.
The SI unit for elasticity and the elastic modulus is the pascal (Pa). This unit is defined as force per unit area, generally a measurement of pressure, which in mechanics corresponds to stress. The pascal and therefore elasticity have the dimension L −1 ⋅M⋅T −2.
Elastic properties describe the reversible deformation (elastic response) of a material to an applied stress. They are a subset of the material properties that provide a quantitative description of the characteristics of a material, like its strength. Material properties are most often characterized by a set of numerical parameters called moduli.
In physics and continuum mechanics, deformation is the change in the shape or size of an object. It has dimension of length with SI unit of metre (m). It is quantified as the residual displacement of particles in a non-rigid body, from an initial configuration to a final configuration, excluding the body's average translation and rotation (its rigid transformation). [1]
Solid mechanics is fundamental for civil, aerospace, nuclear, biomedical and mechanical engineering, for geology, and for many branches of physics and chemistry such as materials science. [1] It has specific applications in many other areas, such as understanding the anatomy of living beings, and the design of dental prostheses and surgical ...