Search results
Results from the WOW.Com Content Network
Single-pole circuit breakers feed 120 V circuits from one of the 120 V buses within the panel, or two-pole circuit breakers feed 240-volt circuits from both buses. 120 V circuits are the most common, and used to power NEMA 1 and NEMA 5 outlets, and most residential and light commercial direct-wired lighting circuits. 240 V circuits are used for ...
Electrical wiring practices developed in parallel in many countries in the late 19th and early 20th centuries. [7] As a result, national and regional variations developed and remain in effect. (see National Electrical Code, electrical wiring, electrical wiring in the United Kingdom). Some of these are retained for technical reasons, since the ...
For example, in North America, a unique split-phase system is used to supply to most premises that works by center tapping a 240 volt transformer. This system is able to concurrently provide 240 volts and 120 volts. Consequently, this allows homeowners to wire up both 240 V and 120 V circuits as they wish (as regulated by local building codes).
Minimum wire size for hand-held or portable equipment is usually restricted by the mechanical strength of the conductors. Many areas, such as the US, which use (nominally) 120 V, make use of three-wire, split-phase 240 V systems to supply large appliances. In this system a 240 V supply has a centre-tapped neutral to give two 120 V supplies ...
Most of the Americas use 60 Hz AC, the 120/240 volt split-phase system domestically and three phase for larger installations. North American transformers usually power homes at 240 volts, similar to Europe's 230 volts. It is the split-phase that allows use of 120 volts in the home. Japan's utility frequencies are 50 Hz and 60 Hz.
RVs in the US are equipped for 120 V 30 A or 240 V 50 A service, and use a cord to connect to a receptacle at the campsite, usually on a power pedestal with one or more receptacles providing 120 V 30 A (TT30R), 240 V 50 A (14-50R), or 120 V 15/20 A (5-20R) service.
A circuit breaker is an electrical safety device designed to protect an electrical circuit from damage caused by current in excess of that which the equipment can safely carry (overcurrent). Its basic function is to interrupt current flow to protect equipment and to prevent fire .
This practice arose from the three-wire system used to supply both 120 volt and 240 volt loads. Because these listed appliances often have components that use either 120, or both 120 and 240 volts, there is often some current on the neutral wire. This differs from the protective grounding wire, which only carries current under fault conditions.