enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hyperbolic partial differential equation - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_partial...

    In mathematics, a hyperbolic partial differential equation of order is a partial differential equation (PDE) that, roughly speaking, has a well-posed initial value problem for the first derivatives. [ citation needed ] More precisely, the Cauchy problem can be locally solved for arbitrary initial data along any non-characteristic hypersurface .

  3. Hyperbolic functions - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_functions

    The Gudermannian function gives a direct relationship between the circular functions and the hyperbolic functions that does not involve complex numbers. The graph of the function a cosh( x / a ) is the catenary , the curve formed by a uniform flexible chain, hanging freely between two fixed points under uniform gravity.

  4. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    Differentiable function – Mathematical function whose derivative exists; Differential of a function – Notion in calculus; Differentiation of integrals – Problem in mathematics; Differentiation under the integral sign – Differentiation under the integral sign formula; Hyperbolic functions – Collective name of 6 mathematical functions

  5. Method of characteristics - Wikipedia

    en.wikipedia.org/wiki/Method_of_characteristics

    Although this is defined using a particular coordinate system, the transformation law relating the ξ i and the x i ensures that σ P is a well-defined function on the cotangent bundle. The function σ P is homogeneous of degree k in the ξ variable. The zeros of σ P, away from the zero section of T ∗ X, are the characteristics of P.

  6. Discontinuous Galerkin method - Wikipedia

    en.wikipedia.org/wiki/Discontinuous_Galerkin_method

    In applied mathematics, discontinuous Galerkin methods (DG methods) form a class of numerical methods for solving differential equations.They combine features of the finite element and the finite volume framework and have been successfully applied to hyperbolic, elliptic, parabolic and mixed form problems arising from a wide range of applications.

  7. Lax–Friedrichs method - Wikipedia

    en.wikipedia.org/wiki/Lax–Friedrichs_method

    A nonlinear hyperbolic conservation law is defined through a flux function : + (()) = In the case of f ( u ) = a u {\displaystyle f(u)=au} , we end up with a scalar linear problem. Note that in general, u {\displaystyle u} is a vector with m {\displaystyle m} equations in it.

  8. Transcendental function - Wikipedia

    en.wikipedia.org/wiki/Transcendental_function

    Functions 4-8 denote the hyperbolic trigonometric functions, while functions 9-13 denote the circular trigonometric functions. The fourteenth function f 14 ( x ) {\displaystyle f_{14}(x)} denotes the analytic extension of the factorial function via the gamma function , and f 15 ( x ) {\displaystyle f_{15}(x)} is its reciprocal, an entire function.

  9. List of integrals of hyperbolic functions - Wikipedia

    en.wikipedia.org/wiki/List_of_integrals_of...

    The following is a list of integrals (anti-derivative functions) of hyperbolic functions. For a complete list of integral functions, see list of integrals. In all formulas the constant a is assumed to be nonzero, and C denotes the constant of integration.