Search results
Results from the WOW.Com Content Network
Osmoregulation is the active regulation of the osmotic pressure of an organism's body fluids, detected by osmoreceptors, to maintain the homeostasis of the organism's water content; that is, it maintains the fluid balance and the concentration of electrolytes (salts in solution which in this case is represented by body fluid) to keep the body fluids from becoming too diluted or concentrated.
An osmoreceptor is a sensory receptor primarily found in the hypothalamus of most homeothermic organisms that detects changes in osmotic pressure.Osmoreceptors can be found in several structures, including two of the circumventricular organs – the vascular organ of the lamina terminalis, and the subfornical organ.
The recommended daily amount of drinking water for humans varies. [1] It depends on activity, age, health, and environment.In the United States, the Adequate Intake for total water, based on median intakes, is 4.0 litres (141 imp fl oz; 135 US fl oz) per day for males older than 18, and 3.0 litres (106 imp fl oz; 101 US fl oz) per day for females over 18; it assumes about 80% from drink and 20 ...
The CV does not exist in higher organisms, but some of its unique characteristics are used by them in their osmoregulatory mechanisms. Research on the CV can therefore help us understand how osmoregulation works in all species. Many issues regarding the CV remain, as of 2010, unsolved: Contraction.
Urinary water loss, when the body water homeostat is intact, is a compensatory water loss, correcting any water excess in the body. However, since the kidneys cannot generate water, the thirst reflex is the all-important second effector mechanism of the body water homeostat, correcting any water deficit in the body.
Cardiac physiology or heart function is the study of healthy, unimpaired function of the heart: involving blood flow; myocardium structure; the electrical conduction system of the heart; the cardiac cycle and cardiac output and how these interact and depend on one another.
While most systems of the body show some degree of autoregulation, it is most clearly observed in the kidney, the heart, and the brain. [1] Perfusion of these organs is essential for life, and through autoregulation the body can divert blood (and thus, oxygen ) where it is most needed.
The cardiovascular centre affects changes to the heart rate by sending a nerve impulse to the cardiac pacemaker via two sets of nerves: sympathetic fibres, part of the autonomic nervous system, to make heart rate faster. the vagus nerve, part of the parasympathetic branch of the autonomic nervous system, to lower heart rate.