enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Linear interpolation - Wikipedia

    en.wikipedia.org/wiki/Linear_interpolation

    A description of linear interpolation can be found in the ancient Chinese mathematical text called The Nine Chapters on the Mathematical Art (九章算術), [1] dated from 200 BC to AD 100 and the Almagest (2nd century AD) by Ptolemy. The basic operation of linear interpolation between two values is commonly used in computer graphics.

  3. Interpolation - Wikipedia

    en.wikipedia.org/wiki/Interpolation

    Polynomial interpolation is a generalization of linear interpolation. Note that the linear interpolant is a linear function. We now replace this interpolant with a polynomial of higher degree. Consider again the problem given above. The following sixth degree polynomial goes through all the seven points:

  4. Numerical analysis - Wikipedia

    en.wikipedia.org/wiki/Numerical_analysis

    The field of numerical analysis predates the invention of modern computers by many centuries. Linear interpolation was already in use more than 2000 years ago. Many great mathematicians of the past were preoccupied by numerical analysis, [5] as is obvious from the names of important algorithms like Newton's method, Lagrange interpolation polynomial, Gaussian elimination, or Euler's method.

  5. Newton polynomial - Wikipedia

    en.wikipedia.org/wiki/Newton_polynomial

    While the interpolation formula can be found by solving a linear system of equations, there is a loss of intuition in what the formula is showing and why Newton's interpolation formula works is not readily apparent. To begin, we will need to establish two facts first: Fact 1.

  6. Lagrange polynomial - Wikipedia

    en.wikipedia.org/wiki/Lagrange_polynomial

    A better form of the interpolation polynomial for practical (or computational) purposes is the barycentric form of the Lagrange interpolation (see below) or Newton polynomials. Lagrange and other interpolation at equally spaced points, as in the example above, yield a polynomial oscillating above and below the true function.

  7. Polynomial interpolation - Wikipedia

    en.wikipedia.org/wiki/Polynomial_interpolation

    View history; General ... polynomial interpolation is the interpolation of a given data set by the polynomial ... polynomial interpolation defines a linear ...

  8. Brahmagupta's interpolation formula - Wikipedia

    en.wikipedia.org/wiki/Brahmagupta's_interpolation...

    Brahmagupta's interpolation formula is a second-order polynomial interpolation formula developed by the Indian mathematician and astronomer Brahmagupta (598–668 CE) in the early 7th century CE. The Sanskrit couplet describing the formula can be found in the supplementary part of Khandakadyaka a work of Brahmagupta completed in 665 CE. [ 1 ]

  9. Bézier curve - Wikipedia

    en.wikipedia.org/wiki/Bézier_curve

    A Bézier curve is defined by a set of control points P 0 through P n, where n is called the order of the curve (n = 1 for linear, 2 for quadratic, 3 for cubic, etc.). The first and last control points are always the endpoints of the curve; however, the intermediate control points generally do not lie on the curve.