enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Vector-valued function - Wikipedia

    en.wikipedia.org/wiki/Vector-valued_function

    A vector-valued function, also referred to as a vector function, is a mathematical function of one or more variables whose range is a set of multidimensional vectors or infinite-dimensional vectors. The input of a vector-valued function could be a scalar or a vector (that is, the dimension of the domain could be 1 or greater than 1); the ...

  3. Vector field - Wikipedia

    en.wikipedia.org/wiki/Vector_field

    A vector field V defined on an open set S is called a gradient field or a conservative field if there exists a real-valued function (a scalar field) f on S such that = = (,,, …,). The associated flow is called the gradient flow , and is used in the method of gradient descent .

  4. numeric_std - Wikipedia

    en.wikipedia.org/wiki/Numeric_std

    It provides arithmetic functions for vectors. Overrides of std_logic_vector are defined for signed and unsigned arithmetic. It defines numeric types and arithmetic functions for use with synthesis tools. Two numeric types are defined: UNSIGNED (represents UNSIGNED number in vector form) and SIGNED (represents a SIGNED number in vector form).

  5. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    In Cartesian coordinates, the divergence of a continuously differentiable vector field = + + is the scalar-valued function: ⁡ = = (, , ) (, , ) = + +.. As the name implies, the divergence is a (local) measure of the degree to which vectors in the field diverge.

  6. Vector field reconstruction - Wikipedia

    en.wikipedia.org/wiki/Vector_field_reconstruction

    Vector field reconstruction has several applications, and many different approaches. Some mathematicians have not only used radial basis functions and polynomials to reconstruct a vector field, but they have also used Lyapunov exponents and singular value decomposition. [2]

  7. Straightening theorem for vector fields - Wikipedia

    en.wikipedia.org/wiki/Straightening_theorem_for...

    The theorem is also known as straightening out of a vector field. ... are the component function of relative to . Let = (, …,). By linear change of ...

  8. Curl (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Curl_(mathematics)

    Interchanging the vector field v and ∇ operator, we arrive at the cross product of a vector field with curl of a vector field: = () , where ∇ F is the Feynman subscript notation, which considers only the variation due to the vector field F (i.e., in this case, v is treated as being constant in space).

  9. Polar factorization theorem - Wikipedia

    en.wikipedia.org/wiki/Polar_factorization_theorem

    In optimal transport, a branch of mathematics, polar factorization of vector fields is a basic result due to Brenier (1987), [1] with antecedents of Knott-Smith (1984) [2] and Rachev (1985), [3] that generalizes many existing results among which are the polar decomposition of real matrices, and the rearrangement of real-valued functions.