enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rank of a group - Wikipedia

    en.wikipedia.org/wiki/Rank_of_a_group

    Indeed, for p-groups, the rank of the group P is the dimension of the vector space P/Φ(P), where Φ(P) is the Frattini subgroup. The rank of a group is also often defined in such a way as to ensure subgroups have rank less than or equal to the whole group, which is automatically the case for dimensions of vector spaces, but not for groups such ...

  3. Torsion-free abelian group - Wikipedia

    en.wikipedia.org/wiki/Torsion-free_abelian_group

    A non-finitely generated countable example is given by the additive group of the polynomial ring [] (the free abelian group of countable rank). More complicated examples are the additive group of the rational field Q {\displaystyle \mathbb {Q} } , or its subgroups such as Z [ p − 1 ] {\displaystyle \mathbb {Z} [p^{-1}]} (rational numbers ...

  4. Fitting subgroup - Wikipedia

    en.wikipedia.org/wiki/Fitting_subgroup

    If G is a finite non-trivial solvable group then the Fitting subgroup is always non-trivial, i.e. if G≠1 is finite solvable, then F(G)≠1. Similarly the Fitting subgroup of G/F(G) will be nontrivial if G is not itself nilpotent, giving rise to the concept of Fitting length.

  5. Rank of an abelian group - Wikipedia

    en.wikipedia.org/wiki/Rank_of_an_abelian_group

    In particular, any intermediate group Z n < A < Q n has rank n. Abelian groups of rank 0 are exactly the periodic abelian groups. The group Q of rational numbers has rank 1. Torsion-free abelian groups of rank 1 are realized as subgroups of Q and there is a satisfactory classification of them up to isomorphism. By contrast, there is no ...

  6. Simple Lie group - Wikipedia

    en.wikipedia.org/wiki/Simple_Lie_group

    Once these are known, the ones with non-trivial center are easy to list as follows. Any simple Lie group with trivial center has a universal cover whose center is the fundamental group of the simple Lie group. The corresponding simple Lie groups with non-trivial center can be obtained as quotients of this universal cover by a subgroup of the ...

  7. List of small groups - Wikipedia

    en.wikipedia.org/wiki/List_of_small_groups

    Small groups of prime power order p n are given as follows: Order p: The only group is cyclic. Order p 2: There are just two groups, both abelian. Order p 3: There are three abelian groups, and two non-abelian groups. One of the non-abelian groups is the semidirect product of a normal cyclic subgroup of order p 2 by a cyclic group of order p.

  8. List of finite simple groups - Wikipedia

    en.wikipedia.org/wiki/List_of_finite_simple_groups

    F 4 (q) has a non-trivial graph automorphism when q is a power of 2. These groups are the automorphism groups of 8-dimensional Cayley algebras over finite fields, which gives them 7-dimensional representations. They also act on the corresponding Lie algebras of dimension 14. G 2 (q) has a non-trivial graph automorphism when q is a power of 3

  9. Free group - Wikipedia

    en.wikipedia.org/wiki/Free_group

    A free group of rank k clearly has subgroups of every rank less than k. Less obviously, a (nonabelian!) free group of rank at least 2 has subgroups of all countable ranks. The commutator subgroup of a free group of rank k > 1 has infinite rank; for example for F(a,b), it is freely generated by the commutators [a m, b n] for non-zero m and n ...