Search results
Results from the WOW.Com Content Network
is a function from domain X to codomain Y. The yellow oval inside Y is the image of . Sometimes "range" refers to the image and sometimes to the codomain. In mathematics, the range of a function may refer to either of two closely related concepts: the codomain of the function, or; the image of the function.
In this case, the domain is represented on the x-axis of the graph, as the projection of the graph of the function onto the x-axis. For a function f : X → Y {\displaystyle f\colon X\to Y} , the set Y is called the codomain : the set to which all outputs must belong.
The term range is sometimes ambiguously used to refer to either the codomain or the image of a function. A codomain is part of a function f if f is defined as a triple ( X , Y , G ) where X is called the domain of f , Y its codomain , and G its graph . [ 1 ]
More generally, evaluating at each element of a given subset of its domain produces a set, called the "image of under (or through) ". Similarly, the inverse image (or preimage ) of a given subset B {\displaystyle B} of the codomain Y {\displaystyle Y} is the set of all elements of X {\displaystyle X} that map to a member of B . {\displaystyle B.}
Graph of a linear function Graph of a polynomial function, here a quadratic function. Graph of two trigonometric functions: sine and cosine. A real function is a real-valued function of a real variable, that is, a function whose codomain is the field of real numbers and whose domain is a set of real numbers that contains an interval.
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
More generally, the restriction (or domain restriction or left-restriction) of a binary relation between and may be defined as a relation having domain , codomain and graph ( ) = {(,) ():}. Similarly, one can define a right-restriction or range restriction R B . {\displaystyle R\triangleright B.}
Domain coloring plot of the function f(x) = (x 2 − 1)(x − 2 − i) 2 / x 2 + 2 + 2i , using the structured color function described below.. In complex analysis, domain coloring or a color wheel graph is a technique for visualizing complex functions by assigning a color to each point of the complex plane.