Search results
Results from the WOW.Com Content Network
The Wilcoxon signed-rank test is a non-parametric rank test for statistical hypothesis testing used either to test the location of a population based on a sample of data, or to compare the locations of two populations using two matched samples. [1]
The Mann–Whitney test (also called the Mann–Whitney–Wilcoxon (MWW/MWU), Wilcoxon rank-sum test, or Wilcoxon–Mann–Whitney test) is a nonparametric statistical test of the null hypothesis that, for randomly selected values X and Y from two populations, the probability of X being greater than Y is equal to the probability of Y being greater than X.
A rank correlation coefficient measures the degree of similarity between two rankings, and can be used to assess the significance of the relation between them. For example, two common nonparametric methods of significance that use rank correlation are the Mann–Whitney U test and the Wilcoxon signed-rank test.
The sign test is a statistical test for consistent differences between pairs of observations, such as the weight of subjects before and after treatment. Given pairs of observations (such as weight pre- and post-treatment) for each subject, the sign test determines if one member of the pair (such as pre-treatment) tends to be greater than (or less than) the other member of the pair (such as ...
A paired difference test is designed for situations where there is dependence between pairs of measurements (in which case a test designed for comparing two independent samples would not be appropriate). That applies in a within-subjects study design, i.e., in a study where the same set of subjects undergo both of the conditions being compared.
In statistics, a rank test is any test involving ranks. ... Wilcoxon signed-rank test; Kruskal–Wallis one-way analysis of variance. Mann–Whitney U (special case)
Over his career Wilcoxon published over 70 papers. [3] His most well-known paper [4] contained the two new statistical tests that still bear his name, the Wilcoxon rank-sum test and the Wilcoxon signed-rank test. These are non-parametric alternatives to the unpaired and paired Student's t-tests respectively. He died on November 18, 1965.
Such as: "The Wilcoxon signed-rank test is not the same as the Wilcoxon rank-sum test. While both are nonparametric and involve summation of ranks, the Wilcoxon signed-rank test requires that the data is paired while the Wilcoxon rank-sum test is used for unpaired data."