Search results
Results from the WOW.Com Content Network
Photosynthesis usually refers to oxygenic photosynthesis, a process that produces oxygen. Photosynthetic organisms store the chemical energy so produced within intracellular organic compounds (compounds containing carbon) like sugars, glycogen , cellulose and starches .
Light-dependent reactions of photosynthesis at the thylakoid membrane. Light-dependent reactions are certain photochemical reactions involved in photosynthesis, the main process by which plants acquire energy. There are two light dependent reactions: the first occurs at photosystem II (PSII) and the second occurs at photosystem I (PSI).
This word is taken from two Greek words, photos, which means light, and synthesis, which in chemistry means making a substance by combining simpler substances. So, in the presence of light, synthesis of food is called 'photosynthesis'. Noncyclic photophosphorylation through light-dependent reactions of photosynthesis at the thylakoid membrane.
In this approach, theories are a specific category of models that fulfill the necessary criteria (see above). One can use language to describe a model; however, the theory is the model (or a collection of similar models), and not the description of the model. A model of the solar system, for example, might consist of abstract objects that ...
F6P has two carbons removed by transketolase, giving erythrose-4-phosphate (E4P). The two carbons on transketolase are added to a G3P, giving the ketose xylulose-5-phosphate (Xu5P). [citation needed] E4P and a DHAP (formed from one of the G3P from the second CO 2 fixation) are converted into sedoheptulose-1,7-bisphosphate (7C) by aldolase enzyme.
For premium support please call: 800-290-4726 more ways to reach us
Carbon on Earth naturally occurs in two stable isotopes, with 98.9% in the form of 12 C and 1.1% in 13 C. [1] [8] The ratio between these isotopes varies in biological organisms due to metabolic processes that selectively use one carbon isotope over the other, or "fractionate" carbon through kinetic or thermodynamic effects. [1]
The following is a breakdown of the energetics of the photosynthesis process from Photosynthesis by Hall and Rao: [6]. Starting with the solar spectrum falling on a leaf, 47% lost due to photons outside the 400–700 nm active range (chlorophyll uses photons between 400 and 700 nm, extracting the energy of one 700 nm photon from each one)