Search results
Results from the WOW.Com Content Network
For algorithms describing how to calculate the remainder, see division algorithm.) The remainder, as defined above, is called the least positive remainder or simply the remainder . [ 2 ] The integer a is either a multiple of d , or lies in the interval between consecutive multiples of d , namely, q⋅d and ( q + 1) d (for positive q ).
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation.. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.
Polynomial remainder theorem. In algebra, the polynomial remainder theorem or little Bézout's theorem (named after Étienne Bézout) [1] is an application of Euclidean division of polynomials. It states that, for every number any polynomial is the sum of and the product by of a polynomial in of degree less than the degree of In particular, is ...
17 is divided into 3 groups of 5, with 2 as leftover. Here, the dividend is 17, the divisor is 3, the quotient is 5, and the remainder is 2 (which is strictly smaller than the divisor 3), or more symbolically, 17 = (3 × 5) + 2. In arithmetic, Euclidean division – or division with remainder – is the process of dividing one integer (the ...
In numerical analysis, polynomial interpolation is the interpolation of a given bivariate data set by the polynomial of lowest possible degree that passes through the points of the dataset. [1] Given a set of n + 1 data points , with no two the same, a polynomial function is said to interpolate the data if for each .
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
The process of substituting remainders by formulae involving their predecessors can be continued until the original numbers a and b are reached: r 2 = r 0 − q 2 r 1 r 1 = b − q 1 r 0 r 0 = a − q 0 b. After all the remainders r 0, r 1, etc. have been substituted, the final equation expresses g as a linear sum of a and b, so that g = sa + tb.
Calculate the remainders left by each product on dividing by 7. Add these remainders. The remainder of the sum when divided by 7 is the remainder of the given number when divided by 7. For example: The number 194,536 leaves a remainder of 6 on dividing by 7. The number 510,517,813 leaves a remainder of 1 on dividing by 7.