Search results
Results from the WOW.Com Content Network
Frictional resistance is offered during the flow of steam through nozzles on moving and stationary blades. In most turbines, the blade wheels rotate in a space full of steam. The viscous friction at the wheel surface causes admission losses as steam passes from nozzle to wheel. The effect of partial admission creates eddies in the blade channels.
A nozzle is a device designed to control the direction or characteristics of a fluid flow (specially to increase velocity) as it exits (or enters) an enclosed chamber or pipe. A nozzle is often a pipe or tube of varying cross sectional area, and it can be used to direct or modify the flow of a fluid (liquid or gas). Nozzles are frequently used ...
A de Laval nozzle (or convergent-divergent nozzle, CD nozzle or con-di nozzle) is a tube which is pinched in the middle, with a rapid convergence and gradual divergence. It is used to accelerate a compressible fluid to supersonic speeds in the axial (thrust) direction, by converting the thermal energy of the flow into kinetic energy .
A steam rocket (also known as a hot water rocket) is a thermal rocket that uses water held in a pressure vessel at a high temperature, such that its saturated vapor pressure is significantly greater than ambient pressure. The water is allowed to escape as steam through a rocket nozzle to produce thrust. [1]
A nozzle is often a pipe or tube of varying cross-sectional area, and it can be used to direct or modify the flow of a fluid (liquid or gas). Nozzles are frequently used to control the rate of flow, speed, direction, mass, shape, and/or the pressure of the stream that emerges from them.
An injector is a system of ducting and nozzles used to direct the flow of a high-pressure fluid in such a way that a lower pressure fluid is entrained in the jet and carried through a duct to a region of higher pressure. It is a fluid-dynamic pump with no moving parts except a valve to control inlet flow.
Due to this high ratio of expansion of steam, the steam leaves the nozzle with a very high velocity. The steam leaving the moving blades has a large portion of the maximum velocity of the steam when leaving the nozzle. The loss of energy due to this higher exit velocity is commonly called the carry over velocity or leaving loss.
The nozzles have to be of the convergent-divergent type for generating high (supersonic) steam velocity. This results in a more expensive and difficult design of the nozzle blade rows. High velocity at the nozzle exit leads to higher cascade losses. Shock waves are generated if the flow is supersonic which further increase the losses.